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A RATIONAL QZ METHOD∗

DAAN CAMPS† , KARL MEERBERGEN† , AND RAF VANDEBRIL†

Abstract. We propose a rational QZ method for the solution of the dense, unsymmetric
generalized eigenvalue problem. This generalization of the classical QZ method operates implicitly
on a Hessenberg, Hessenberg pencil instead of on a Hessenberg, triangular pencil. Whereas the
QZ method performs nested subspace iteration driven by a polynomial, the rational QZ method
allows for nested subspace iteration driven by a rational function; this creates the additional freedom
of selecting poles. In this article we study Hessenberg, Hessenberg pencils, link them to rational
Krylov subspaces, propose a direct reduction method to such a pencil, and introduce the implicit
rational QZ step. The link with rational Krylov subspaces allows us to prove essential uniqueness
(implicit Q theorem) of the rational QZ iterates as well as convergence of the proposed method. In
the proofs, we operate directly on the pencil instead of rephrasing it all in terms of a single matrix.
Numerical experiments are included to illustrate competitiveness in terms of speed and accuracy
with the classical approach. Two other types of experiments exemplify new possibilities. First we
illustrate that good pole selection can be used to deflate the original problem during the reduction
phase, and second we use the rational QZ method to implicitly filter a rational Krylov subspace in
an iterative method.
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1. Introduction. The numerical computation of the eigenvalues of a regular1

matrix pair A,B ∈ Cn×n is the principal problem studied in this paper. The set of
eigenvalues of (A,B) is denoted as Λ and defined by

(1) Λ = {λ = α/β ∈ C̄ : det(βA− αB) = 0}

with C̄ = C ∪ {∞}. If β 6= 0, the eigenvalue is equal to λ = α/β, while for β = 0
the eigenvalue is located at ∞. When there are no infinite eigenvalues B is invertible
and the eigenvalues of the pencil are equal to those of B−1A or AB−1 (see, e.g., the
monographs [10, 33]).

The QZ method, originally introduced by Moler and Stewart [16], is presumably
the method of choice for the solution of this problem for general small to medium-
size matrix pairs. The original pencil (A,B) is transformed via unitary equivalences
to generalized Schur form (S, T ), where both S and T are upper triangular. The
eigenvalues of (A,B) are readily found as the ratios of the diagonal elements of the
pencil (S, T ). The method consists conceptually of 2 phases, just like the QR algo-
rithm:

1. A direct reduction of the matrix pair (A,B) to an equivalent Hessenberg,
triangular matrix pair (H,R).
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2. An iterative phase during which deflating subspaces of the matrix pair (H,R)
are determined and the matrix pair is essentially reduced to the triangular,
triangular pair (S, T ).

Various modifications and additions to the original algorithm have been proposed
after its original introduction. Kaufman [13] added a deflation strategy and Ward [30]
further refined various aspects of the method. Watkins and Elsner [35] generalized the
QZ algorithm to a class of GZ iterations, and more recently, K̊agström and Kressner
[11] incorporated an aggressive early deflation strategy into a multishift QZ iteration.
For more information we refer the reader to the monographs of Watkins [33] and
Kressner [14].

Vandebril and Watkins [29] proposed a generalization beyond the Hessenberg,
upper triangular pair. Their QZ like method reduces the matrix pair (A,B) to con-
densed form and iterates directly on the condensed matrix pair. A matrix pair (A,B)
is said to be a condensed pair if both matrices are Hessenberg matrices and if there is
exactly one nonzero element for every subdiagonal position which can be either at A
or B. The classical Hessenberg, triangular format used in the QZ method is a special
instance of a condensed matrix pair which maintains all zero subdiagonal elements at
the side of B.

In this paper we propose a further generalization of the QZ method beyond con-
densed pairs. We will call this method the rational QZ (RQZ) method as it links
strongly to rational Krylov subspaces [2]. As we will demonstrate in detail in the
remainder of the paper, Hessenberg pairs and the associated rational Krylov sub-
spaces are determined by poles that can be exploited to improve the convergence
of the method. Both the original QZ algorithm [16] and the condensed QZ algo-
rithm [29] turn out to be special instances of the RQZ method determined by a
specific choice of poles. An implementation of the RQZ method is publicly available
at http://numa.cs.kuleuven.be/software/rqz.

This article is closely related to the article by Berljafa and Güttel [2]. Starting
from a rational Krylov subspace and the linked Hessenberg pair, their article discusses
a way to change the poles by operating solely on the Hessenberg pair. We will see
in this article that their way of introducing poles and moving them is related to
introducing a shift and chasing it, like in typical QR algorithms. We will extend these
results and formulate an implicit QZ algorithm that executes nested subspace iteration
driven by a rational function. Moreover, in the theoretical analysis we directly rely on
the pair (A,B) instead of rephrasing the relations in terms of a single matrix AB−1

or B−1A as is usually done.
This paper is organized as follows. The notion of a Hessenberg pair is formally

defined in section 2, its properties are studied subsequently, and two types of op-
erations on Hessenberg pairs are discussed: the introduction of a new pole and the
swapping of poles. Section 3 proposes a method to reduce a general matrix pair to a
Hessenberg pencil by means of unitary equivalence transformations. This is the RQZ
analogue of the initial reduction phase in the QZ algorithm. The generalization of
the iterative phase is presented in section 4. It is illustrated how an RQZ step with
a single shift can be performed implicitly and numerical experiments illustrate the
speed and accuracy. An implicit Q theorem for Hessenberg pairs is stated and used to
prove that the RQZ iteration implicitly performs nested subspace iteration driven by
a set of rational functions in sections 5 and 6. In section 7 we apply the RQZ method
to filter a rational Krylov subspace in an iterative method. We conclude in section 8.

In this article we adopt the following notational conventions. Scalars α, β, . . . are
denoted with Greek letters and matrices A,B, . . . with capital Latin letters. Vectors

http://numa.cs.kuleuven.be/software/rqz
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a, b, . . . are denoted in lowercase boldface Latin letters. The entry on row i and
column j of A is denoted as aij , and column i of A as ai. The colon notation of
MATLAB is sometimes used to denote part of a matrix: Ai:j,: stands for rows i to j
of A. I is the identity matrix, and ei is its ith column. A∗ is the Hermitian conjugate
of A, and R(A) is the column space of A. Ek = R(e1, . . . , ek) is the subspace spanned
by the k first canonical basis vectors. Kk(A,v) = R(v, Av, . . . , Ak−1v) is the Krylov
subspace of order k generated by A from v. The complex plane extended with the
point at infinity, C ∪ {∞}, is denoted as C̄. For all nonzero scalars α ∈ C, we define
α/0 =∞ and α/∞ = 0.

2. Hessenberg pairs and their poles. In this section we repeat necessities
from the literature and introduce some basic concepts linked to Hessenberg pairs.
These pairs appear naturally in the context of the rational Krylov method introduced
and studied by Ruhe [18, 19, 20, 21]. We will elaborate on this connection in section 7.

2.1. Proper Hessenberg pairs. A matrix H is of Hessenberg form if all its
elements below the first subdiagonal are zero. A proper or irreducible Hessenberg
matrix has all its subdiagonal elements different from zero. Being proper ensures that
there are no obvious deflations allowing us to split the Hessenberg matrix into block
upper triangular form with smaller submatrices. For a pair of Hessenberg matrices
there is a subtlety, as there are two less obvious possibilities for deflation.

Definition 2.1 (proper Hessenberg pair). A pair of Hessenberg matrices A,B ∈
Cn×n is said to be proper (or irreducible) if the following two conditions are met:

I. There is no i in 1, . . . , n− 1 so that ai+1,i and bi+1,i are simultaneously zero.
II. The first columns of A and B are linearly independent, as are the last rows

of A and B.
For a proper Hessenberg pair we define its ordered pole tuple as Ξ = (ξ1, . . . , ξn−1),
ξi ∈ C̄, where ai+1,i/bi+1,i = ξi for all i from 1 to n−1.

The ratios of the subdiagonal elements of A over the subdiagonal elements of B
are thus called the poles of the proper Hessenberg pair. Since we set division by zero
equal to ∞ in C̄, a pole is located at ∞ if the respective subdiagonal element of B is
zero.

The first condition of being proper means that all poles are well-defined over C̄,
so there is no 0/0. Just like in the classical case ai+1,i = bi+1,i = 0 allows us to deflate
the problem into two independent subproblems.

The second condition is less obvious, but it is simple to deflate an eigenvalue if it
is not met. Construct a rotation Q1, acting on the first two rows such that Q∗1 maps
the first column of A and B in the direction of e1, and then the pair Q∗1(A,B) allows
for a deflation. Similarly we can construct a rotation Zn−1 to transform (A,B)Zn−1
to a deflatable format in the case the last rows are linearly dependent. If condition II
does not hold, then the pair can be transformed into an equivalent pair for which
condition I does not hold in the first or last subdiagonal position.

We remark that even if condition II of the definition of a proper Hessenberg pair
were not met, we still define the first pole ξ1 and last pole ξn−1 as in Definition 2.1,
provided they are in C̄. Suppose there is some scalar γ such that a1 = γb1 with a1

and b1 the first columns of A and B, respectively. This means that γ is both the first
pole, ξ1 = a21/b21 = γ, and an eigenvalue, Ae1 = γBe1. Similarly the last pole ξn−1
is an eigenvalue if the last rows of A and B are linearly dependent.
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Properness of the Hessenberg matrix ensures essential uniqueness of the QR iter-
ates, which is crucial in the design of an implicit QR algorithm [8, 9] for the standard
eigenvalue problem. We will prove in section 5 that also proper Hessenberg pairs
inherit a type of essential uniqueness allowing for the design of an implicit method,
which is the implicit Q theorem for Hessenberg pairs.

The other pencils for which QZ algorithms were designed fit in Definition 2.1.
Pairs in Hessenberg, triangular form [16] are proper with poles Ξ = (∞,∞, . . . ,∞);
a pair of matrices in condensed form [29] is also a proper Hessenberg pair with poles
being either 0 or ∞.

The properties of proper Hessenberg pairs discussed in the next lemma are fre-
quently used throughout the paper.

Lemma 2.2. Let (A,B) ∈ Cn×n be a proper Hessenberg pair with poles Ξ =
(ξ1, . . . , ξn−1). Then the following statements hold:

I. For µ, ν ∈ C, such that µ/ν /∈ Ξ, we have that (νA−µB) is a proper Hessen-
berg matrix.

II. For µ, ν ∈ C, such that µ/ν is equal to a certain pole ξk (1 ≤ k ≤ n− 1), we
have that N = (νA−µB) is block upper triangular,

N =

[
N11 N12

N22

]
,

where N11 and N22 are Hessenberg matrices of sizes k×k and (n− k)×(n− k),
respectively.

III. For µ, ν, α, β ∈ C, such that µβ 6= αν, we have that

(M,N) = (βA−αB, νA−µB)

is a proper Hessenberg pair with poles
βak+1,k−αbk+1,k

νak+1,k−µbk+1,k
for k = 1, . . . , n− 1.

IV. For k = 1, . . . , n− 1 we have that R(a1, . . . ,ak) 6= R(b1, . . . , bk).

Proof. Statements I and II are trivial. The pencil of statement III satisfies the def-
inition of a proper Hessenberg pair: M and N are clearly upper Hessenberg matrices,
and their kth subdiagonal elements are[

mk+1,k

nk+1,k

]
=

[
β −α
ν −µ

] [
ak+1,k

bk+1,k

]
.

The vector on the left is different from zero since the matrix is nonsingular and the
vector on the right is nonzero. The first column of M is also linear independent from
the first column of N because the same nonsingular matrix is used in the transforma-
tion. The same holds for the last row. The proof of statement IV is by induction and
contradiction. The case k = 1 follows from the definition of a proper Hessenberg pair.
Suppose the statement holds up to column k. We assume now, by contradiction, that
it breaks down at column k + 1, and thus R(a1, . . . ,ak+1) = R(b1, . . . , bk+1). The
equality implies the existence of a (k + 1)×(k + 1) matrix C such that

(2) [a1, . . . ,ak+1] = [b1, . . . , bk+1]

 c11 . . . c1,k+1

...
. . .

...
ck+1,1 . . . ck+1,k+1

 .
It follows from the induction hypothesis that there is a j with 1 ≤ j ≤ k such that
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aj /∈ R(b1, . . . , bk). Therefore ck+1,j 6= 0. By the Hessenberg structure,

0 = ak+2,j =

k+1∑
i=1

bk+2,i ci,j = bk+2,k+1ck+1,j .

This implies that bk+2,k+1 must be zero. Equation (2) consequently implies that also
ak+2,k+1 = 0. These two values being simultaneously zero contradicts the proper-
ness.

2.2. Manipulating the poles of a Hessenberg pair. In this section we will
revisit two operations for manipulating the poles of a Hessenberg pair, namely, chang-
ing the first or the last pole and swapping poles (see also Berljafa and Güttel [2]).

Changing poles at the boundaries. Let A,B ∈ Cn×n be a proper Hessenberg pair
and assume the first pole ξ1 different from the eigenvalues of (A,B). The pole ξ1 can

be changed to another pole ξ̂1 ∈ C̄ by multiplying (A,B) from the left with a unitary
transformation Q∗1, where Q∗1x = αe1 and

x = γ̂ (β̂1A−α̂1B)(β1A−α1B)−1e1(3)

= γ (A−ξ̂1B)(A−ξ1B)−1e1

with γ and γ̂ convenient scaling factors, and α̂1, β̂1, α1, β1 ∈ C are chosen to satisfy
the new pole ξ̂1 = α̂1/β̂1 and the old pole ξ1 = α1/β1. The notation with α and
β to denote (βA−αB) is factually the most correct one. For notational simplicity,
however, we will often use the shorthand notation (A−ξB), where ξ = α/β instead.

As ξ̂1 6= ξ1, otherwise nothing needs to be done, x must be a vector with only the two
leading elements nonzero and thus Q1 is always well defined and can, for example, be
chosen as a rotation matrix.

If Q1 is used to compute (Â, B̂) = Q∗1(A,B), then ξ̂1 will become the first pole of

(Â, B̂) because the first subdiagonal element of (Â− ξ̂1B̂) is zero:

(Â− ξ̂1B̂)e1 = Q∗1(A− ξ̂1B)e1

= γ̃ Q∗1(A− ξ̂1B)(A− ξ1B)−1e1 =
γ̃

γ
Q∗1x =

α γ̃

γ
e1.

Theoretically, under the assumption that B is nonsingular, we could equally well
define x = γ(AB−1 − ξ̂1I)(AB−1 − ξ1I)−1e1. Practically, however, to avoid the non-
singularity assumption of B, and for reasons of numerical stability, we stick to (3).

Remark 2.3. As (A−ξ1B)−1e1 is a scalar multiple of e1 there is no need to com-
pute this in practice. Moreover, even if ξ1 is an eigenvalue, a scalar multiple of e1
is always a solution of (A−ξB)y = e1. The inverse factor is included to emphasize
the rational function used to update the pole and moreover, it is consistent with the
analysis of Vandebril and Watkins [28, 29], where it does play a role in the multishift

setting. In practice we compute x = γ(A−ξ̂1B)e1 in O(1) operations.

We can compute an equivalence transformation to change the last pole, by operat-
ing from the right on the Hessenberg pair in a comparable way. Assume ξn−1 different
from the eigenvalues of (A,B). We can change the pole ξn−1 to ξ̂n−1 ∈ C̄. If we con-

sider the row vector xT = γeTn (A−ξn−1B)−1(A−ξ̂n−1B), with γ a convenient scaling
factor, and a transformation Zn−1 that introduces a zero in the penultimate position
of xT , xTZn−1 = αeTn , then the last pole in the Hessenberg pair (Â, B̂) = (A,B)Zn−1
is changed to ξ̂n−1.
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Figure 1, where poles ξ3 = 3 / c and ξ4 = 4 / d are swapped. The swapping is220

achieved by computing unitary matrices Q4 and Z3 that change the order of the221

eigenvalues in the 2×2 blocks A4:5,3:4 and B4:5,3:4. These blocks are indicated with222

the shaded region in Figure 1. The equivalence transformation affects all elements223

marked with ⊗ in pane II of Figure 1. Note that the ratios 4 / d and 3 / c are224

preserved under swapping but the subdiagonal values themselves can change.225

A

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

1
2
3
4
5

B

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

a
b

c
d

e

I.

A

× × ⊗ ⊗ × ×
× ⊗ ⊗ × ×

⊗ ⊗ × ×
⊗ ⊗ ⊗

⊗ ⊗
×

1
2
4
3
5

B

× × ⊗ ⊗ × ×
× ⊗ ⊗ × ×

⊗ ⊗ × ×
⊗ ⊗ ⊗

⊗ ⊗
×

a
b
d

c
e

II.

Fig. 1. Swapping poles in a Hessenberg pair: (I) before swap, (II) after swap.

Swapping diagonal elements in an upper triangular matrix is a classical problem,226

also used to reorder eigenvalues in the (generalized) Schur form. It can be solved as227

the solution of a coupled Sylvester equation [12] or by direct computations [26]. Its228

solution is unique if ξi differs from ξi+1.229

Details and solutions are found, e.g., in Watkins [31], K̊agström & Poromaa [12],230

and Van Dooren [26]. In [26] it is also proven that the problem can be solved in a231

backward stable manner.232

3 Direct reduction to a proper Hessenberg pair. The rational QZ algo-233

rithm we propose in Section 4 operates on a proper Hessenberg pair. If we are given234

an arbitrary matrix pencil (A,B) not yet in (proper) Hessenberg form, we first need235

to transform it to this form. We use equivalences since we are interested in the eigen-236

values and, for reasons of numerical stability we will stick to unitary equivalences. At237

the end of the section we will illustrate with a numerical experiment that clever pole238

selection can lead to deflations, already in the reduction process.239

3.1 The reduction algorithm. We will transform an n×n matrix pair (A,B)240

to a unitary equivalent Hessenberg pair with a prescribed tuple of poles Ξ = (ξ1,241

. . ., ξn−1). The algorithm proceeds similarly to the direct reduction to Hessenberg,242

triangular form, with the difference that a pole is introduced at every step.243

As in the classical reduction to Hessenberg, upper triangular pair we commence244

with computing a QR factorization of B = QR and updating the matrix pair to245

(Q∗A,Q∗B). The matrix Q∗B is now already in upper triangular form. This is shown246

in pane I of Figure 2 for our running example matrix pair of size 5× 5. Moreover, we247

assume in the remainder of this section, that all zeros on the diagonal of B –infinite248

eigenvalues– are removed [33].249

We will now bring the first column of A to Hessenberg form. In pane II, a zero250

is introduced in position (5, 1) of matrix A by operating on the last two rows. This251

destroys the upper triangular shape in the last two rows of B. The upper triangular252

shape can be restored by acting on columns 4 and 5 as shown in pane III without253

destroying the newly created zero in A.254

The process of introducing zeros in the first column of A by acting on the rows255

and maintaining the upper triangular structure in B by acting on the columns can256

This manuscript is for review purposes only.

Fig. 1. Swapping poles in a Hessenberg pair: (I) before swap, (II) after swap.

Again, the system eTn (A−ξn−1B)−1 is never solved in practice as the solution is
a scalar multiple of eTn , but is only included for theoretical purposes.

Swapping poles. Any two consecutive poles ξi and ξi+1 in a proper Hessenberg
pair (A,B) can be swapped via a unitary equivalence on (A,B). We assume both poles
to be different; otherwise nothing needs to be done. This procedure is illustrated in
Figure 1, where poles ξ3 = 3 / c and ξ4 = 4 / d are swapped. The swapping
is achieved by computing unitary matrices Q4 and Z3 that change the order of the
eigenvalues in the 2×2 blocks A4:5,3:4 and B4:5,3:4. These blocks are indicated with the
shaded region in Figure 1. The equivalence transformation affects all elements marked
with ⊗ in pane II of Figure 1. Note that the ratios 4 / d and 3 / c are preserved
under swapping but the subdiagonal values themselves can change. Swapping diagonal
elements in an upper triangular matrix is a classical problem, also used to reorder
eigenvalues in the (generalized) Schur form. It can be solved as the solution of a
coupled Sylvester equation [12] or by direct computations [26]. Its solution is unique
if ξi differs from ξi+1.

Details and solutions are found, e.g., in Watkins [31], K̊agström and Poromaa [12],
and Van Dooren [26]. In [26] it is also proved that the problem can be solved in a
backward stable manner.

3. Direct reduction to a proper Hessenberg pair. The rational QZ algo-
rithm we propose in section 4 operates on a proper Hessenberg pair. If we are given
an arbitrary matrix pencil (A,B) not yet in (proper) Hessenberg form, we first need
to transform it to this form. We use equivalences since we are interested in the eigen-
values and, for reasons of numerical stability, we will stick to unitary equivalences. At
the end of the section we will illustrate with a numerical experiment that good pole
selection can lead to deflations, already in the reduction process.

3.1. The reduction algorithm. We will transform an n×n matrix pair
(A,B) to a unitary equivalent Hessenberg pair with a prescribed tuple of poles Ξ =
(ξ1, . . . , ξn−1). The algorithm proceeds similarly to the direct reduction to Hessen-
berg, triangular form, with the difference that a pole is introduced at every step.

As in the classical reduction to a Hessenberg, upper triangular pair we commence
with computing a QR factorization of B = QR and updating the matrix pair to
(Q∗A,Q∗B). The matrix Q∗B is now already in upper triangular form. This is shown
in pane I of Figure 2 for our running example matrix pair of size 5× 5. Moreover, we
assume in the remainder of this section that all zeros on the diagonal of B—infinite
eigenvalues—are removed [33].

We will now bring the first column of A to Hessenberg form. In pane II, a zero
is introduced in position (5, 1) of matrix A by operating on the last two rows. This
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A Q∗A

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

B Q∗B

× × × × ×
× × × ×

× × ×
× ×

×

I.

A Q∗
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× × × × ×
× × × × ×

⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗

⊗
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× × × ×

× × ×
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⊗ ⊗

II.

A AZ4

×
×
×
×

× ×
× ×
× ×
× ×
× ×

⊗ ⊗
⊗ ⊗
⊗ ⊗
⊗ ⊗
⊗ ⊗

B BZ4

× × ×
× ×

×
⊗ ⊗
⊗ ⊗
⊗ ⊗
⊗ ⊗

⊗

III.

Fig. 2. Reduction to a Hessenberg pencil. First part.

be repeated until the first column of A is brought to upper Hessenberg shape. This257

coincides with the standard reduction to a Hessenberg, triangular pair [33]. We have258

arrived at pane I of Figure 3. The first column of (A,B) is now already in the correct259

form, but has a pole at ∞. We replace ∞ by another pole using the techniques from260

Subsection 2.2 applied to the first column of (A,B) which is in Hessenberg form. This261

is always possible, except when there is an obvious deflation in the top left corner,262

meaning that the current pole is undefined as 0/0. This does not pose any problems:263

deflate and continue. We start by introducing the last pole ξ4 = 4 / d first, as in264

the following steps of the reduction procedure this pole will move down to end up at265

the correct position at the bottom of the subdiagonal. The current state of the pair266

is visualized in pane II of Figure 3.267
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IV.
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× × × ×

× × ×
× ×

×
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VI.

Fig. 3. Reduction to a Hessenberg pencil. Second part.

The second column has been brought to Hessenberg, triangular form in pane III268

of Figure 3 via the classical procedure of introducing zeros in the second column of A269
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Fig. 3. Reduction to a Hessenberg pencil. Second part.

destroys the upper triangular shape in the last two rows of B. The upper triangular
shape can be restored by acting on columns 4 and 5 as shown in pane III without
destroying the newly created zero in A.

The process of introducing zeros in the first column of A by acting on the rows
and maintaining the upper triangular structure in B by acting on the columns can
be repeated until the first column of A is brought to upper Hessenberg shape. This
coincides with the standard reduction to a Hessenberg, triangular pair [33]. We have
arrived at pane I of Figure 3. The first column of (A,B) is now already in the correct
form, but has a pole at ∞. We replace ∞ by another pole using the techniques from
subsection 2.2 applied to the first column of (A,B) which is in Hessenberg form. This
is always possible, except when there is an obvious deflation in the top left corner.
This does not pose any problems: deflate and continue. We start by introducing the
last pole ξ4 = 4 / d first; as in the following steps of the reduction procedure this pole
will move down to end up at the correct position at the bottom of the subdiagonal.
The current state of the pair is visualized in pane II of Figure 3.

The second column has been brought to Hessenberg, triangular form in pane III
of Figure 3 via the classical procedure of introducing zeros in the second column of A
and maintaining the upper triangular structure in B. This procedure does not affect
the existing pole ξ4. At this stage, the first pole equals ξ4, while the second pole is
∞. The poles in the shaded region of pane III are now swapped via the techniques
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from subsection 2.2, which moves the pole at ∞ to the top of the matrix pair in pane
IV. The swapping technique can be used, as the two leading columns of (A,B) are
in Hessenberg form at this stage of the reduction algorithm. The swapping is always
well defined, even if there is a succession of identical poles. The pole ξ4 has moved one
row down and one column to the right. The pair is now ready for the introduction of
pole ξ3 as shown in pane V. This entire process of creating zeros, swapping poles, and
introducing a new pole can be repeated until the end result of pane VI is obtained,
and the matrix is in the desired Hessenberg form.

After the reduction process, the matrix does not necessarily need to be in proper
Hessenberg form. Possibly the pole ξn−1 coincides with an eigenvalue, allowing for
deflation in the lower right corner. In this case one deflates ξn−1 and checks whether
ξn−2 leads to a deflation, and so forth, until the matrix has become proper. It can
also happen that during the reduction any of the interior poles deflate. In this case
the reduction can be continued on the separated parts of the pencil. This situation is
studied in the example of subsection 3.2.

The introduction of the poles takes an additional 6n3 flops on top of the 8n3

operations required to reduce a pencil to Hessenberg, triangular form [10].

3.2. Numerical experiment. We study two matrix pairs from the magneto-
hydrodynamics (MHD) dataset available in the Matrix Market collection [3]. The
matrices are of sizes 416 and 1280, respectively, and are known to be ill-conditioned.
They originate from a Galerkin finite element discretization of the underlying MHD
problem. Their spectrum consists of a tail along the negative real axis and a set of
eigenvalues close to the imaginary axis. In this numerical experiment we determine
deflating subspaces for the two regions of eigenvalues already during the reduction
phase. The tests were run in MATLAB R2017b.

The idea is to introduce poles that make up a rational filter that mainly affects
one region of eigenvalues. To achieve this effect, the poles are chosen on a contour
Γ in the complex plane that contains the eigenvalues along the negative real axis.
This approach is inspired by the link between contour integration methods [17, 22]
and rational filtering techniques [24, 25]. In section 6 we explain in full detail how
introducing and swapping poles implicitly applies a rational filter.

The poles are chosen on an elliptical contour Γ = e(c, rx, ry, θ), where c is the
center of the ellipse, rx is the radius in x-direction, ry is the radius in the y-direction,
and θ is the angle over which the axes of the ellipse are rotated. For the smaller
problem, Γ is selected as e(−1.3, 1.5, 3, 0) and discretized in 120 nodes. For the larger
problem, Γ = e(−25, 27, 6, 0) and it is discretized in 400 nodes. These nodes are the
poles introduced during the reduction to Hessenberg form. The aim is to get the pair
improper, enforcing thereby a middle deflation separating the two regions. In the case
of a middle deflation we continue introducing poles on the separated parts.

The results are presented in Figures 4 to 6. Figure 4 shows an overview of the
spectrum of both matrix pairs. The two regions of eigenvalues are indicated with
different markers. The box in Figure 4 marks the area in which Figure 5 will zoom in;
it shows where the regions meet in detail, together with the poles of the Hessenberg
pair.

Figure 6 displays the magnitude of the subdiagonal elements |ai+1,i|+|bi+1,i|. All
poles which are considered numerically zero and thus lead to a deflation are empha-
sized in a shaded rectangle. Typically some of the first and last poles are deflated, but
more important is the presence of interior deflations. This happens at poles 103 to
106 after 160 poles have been introduced in the pair of size 416. For the larger pair,
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Fig. 6. Magnitudes of the subdiagonal elements in the matrix pair after the Hessenberg reduction
for the problem of size 416 (left) and 1280 (right).

poles 317 to 321 are deflated after 621 poles have been introduced. The eigenvalues
outside Γ are located in the top left part of the Hessenberg pair, and those inside Γ
appear after the interior deflation.
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Fig. 7. Single shifted implicit RQZ step on a 5×5 Hessenberg pair with shift �.

In the rational QZ algorithm we chase a shift instead of a bulge or a rotation.370

However, the shift is encoded in the rotation and bulge as well, as it is found as an371

eigenvalue of Watkins’ bulge pencil [32, Section 5], [33]; the other eigenvalue in the372

bulge pencil is ∞. If we consider the same bulge pencil in the rational QZ case we373

see that the eigenvalue at ∞ is replaced by a pole of the pencil. Moreover, also the374

pole swapping technique is nothing else than the bulge exchange interpretation of375

Watkins [31].376

4.2 Shifts, poles, and deflation. In order to implement the RQZ algorithm377

and in particular a single RQZ step, we need good strategies to select the shift, the378

new pole introduced at the very end, and a procedure to check if there are deflations.379

For the shifts we typically take the Wilkinson shift. This is the eigenvalue of the380

trailing 2×2 block that is closest to ann/bnn. For the poles there are several options:381

one could as well consider a Wilkinson strategy determined by the 2×2 block in the382

upper-left corner or one could use other techniques such as poles on a contour to383

do filtering, see, e.g., Subsection 3.2. Optimal pole selection is a difficult issue and384

very problem specific, this is beyond the scope of this manuscript; in the numerical385

experiments we will test some straightforward options.386

The deflation criterion for the poles ξ2, . . . , ξn−2 is obvious. If one of these is not387

in C̄, the problem can be split into smaller, independent problems. This means in fact388

that for a certain i, two subdiagonal elements ai+1,i and bi+1,i are simultaneously zero.389

To numerically check this we use the classical relative criterion taking the sizes of the390
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interior poles are fixed, the exterior ones can be altered. Instead of changing ξ1 or394

ξn−1 to another pole, we would like to know whether it is possible to move them395

outside of C̄: we would like to deflate an eigenvalue. To this end we need to create396

two zeros with a single operation such that the pair is no longer proper. We discuss397
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Fig. 7. Single shifted implicit RQZ step on a 5×5 Hessenberg pair with shift %.

This numerical experiment shows that deflating subspaces containing regions of
eigenvalues can be found already during the reduction to Hessenberg form. We would
like to stress that deflation is obtained without any of the poles converging toward an
eigenvalue, but by choosing poles on a contour such that they construct an effective
rational filter.

4. Implicitly single shifted rational QZ step. In this section we present the
implicit RQZ step for a Hessenberg pair. Numerical experiments are included at the
end of this section to illustrate the performance and accuracy of the algorithm.

The algorithm operates on proper Hessenberg pairs. These pairs could be the
result of the reduction procedure presented in section 3 or they could be given directly,
e.g., as coming from an iterative rational Krylov method, where one would like to
compute the eigenvalues of the projected Hessenberg pair. These eigenvalues are
approximations to the eigenvalues of the original problem and are called the Ritz
values if the final pole is at ∞ or Harmonic Ritz values for a final pole at 0 [4,
21].

4.1. The algorithm. Before describing the algorithm we would like to comment
on the nomenclature. We use both the terms poles ξ and shifts % to refer to elements
on the subdiagonal of a Hessenberg pair. In fact our shifts are poles as well, but we
typically consider poles as subdiagonal elements that are sustained in the Hessenberg
pair, while shifts are introduced and removed in a single implicit RQZ step. A shift
is pushed in at the top, chased to the bottom, and pulled out at the end.

We introduce the RQZ procedure with an example. Given a 5×5 Hessenberg pair
(A,B) with poles ξ1 = 1 / a , ξ2 = 2 / b , ξ3 = 3 / c , ξ4 = 4 / d ∈ C̄, the RQZ
step consists of three stages, similar to all algorithms of implicit QR type. These are
an initialization, a chasing, and a finalization phase.

Initialization. Suppose we are given a shift % = ⊕/� ∈ C̄, for instance, the
Wilkinson shift. Pane I in Figure 7 shows the Hessenberg pair in its initial state. The
shift2 is introduced in pane II by changing the first pole with a transformation Q1.

2A shift equal to a pole will not result in a breakdown, but leads to slow or no convergence at
all (see section 6). In practice shifts should be taken differently from the poles.
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Chasing. Panes III–V show how the shift is relocated from the first position on
the subdiagonal to position n−1 by repeatedly swapping it with the poles of the
Hessenberg pair. The shift is chased to the bottom. The matrix elements that are
changed in every step are marked with an ⊗.

During this procedure the shift will move from the top-left to the bottom-right
and all poles will move up one position in the direction of the top-left corner. The
assumption that the shift differs from the poles % 6= ξi for all i ensures that none of
the swapping operations equals an identity; otherwise the downward movement of the
shift will undo the upward movement of the corresponding pole.

Finalization. Finally, in pane VI, one last operation can be performed where we
have the possibility to remove the shift % and introduce any new pole ξ̂4 = 5 / e
∈ C̄, via the procedure described in subsection 2.2.

The reader familiar with the classical QZ algorithm [16] or the condensed QZ
algorithm [29] can verify that the algorithm described here generalizes both methods.
In the QZ algorithm [33] one chases a bulge and in the final step the new pole was
always put to ∞ thereby restoring the upper triangular form of B. In the condensed
QZ algorithm [29] a rotation was chased and in the final step one allowed for a pole
to be at 0 or ∞.

In the rational QZ algorithm we chase a shift instead of a bulge or a rotation.
However, the shift is encoded in the rotation and bulge as well, as it is found as an
eigenvalue of Watkins’ bulge pencil [32, section 5], [33]; the other eigenvalue in the
bulge pencil is ∞. If we consider the same bulge pencil in the rational QZ case we
see that the eigenvalue at ∞ is replaced by a pole of the pencil. Moreover, also the
pole swapping technique is nothing other than the bulge exchange interpretation of
Watkins [31].

4.2. Shifts, poles, and deflation. In order to implement the RQZ algorithm
and in particular a single RQZ step, we need good strategies to select the shift, the
new pole introduced at the very end, and a procedure to check if there are deflations.

For the shifts we typically take the Wilkinson shift. This is the eigenvalue of the
trailing 2×2 block that is closest to ann/bnn. For the poles there are several options:
one could as well consider a Wilkinson strategy determined by the 2×2 block in the
upper-left corner or one could use other techniques such as poles on a contour to do
filtering (see, e.g., subsection 3.2). Optimal pole selection is a difficult issue and very
problem specific, and this is beyond the scope of this manuscript; in the numerical
experiments we will test some straightforward options.

The deflation criterion for the poles ξ2, . . . , ξn−2 is obvious. If one of these is not
in C̄, the problem can be split into smaller, independent problems. This means in fact
that for a certain i, two subdiagonal elements ai+1,i and bi+1,i are simultaneously zero.
To numerically check this we use the classical relative criterion taking the sizes of the
neighboring elements into consideration [10], i.e., |ai+1,i|≤ cεm(|ai,i|+|ai+1,i+1|) and
|bi+1,i|≤ cεm(|bi,i|+|bi+1,i+1|), with εm the machine precision and c a small constant.

The situation for the exterior poles ξ1 and ξn−1 is more peculiar. Whereas the
interior poles are fixed, the exterior ones can be altered. Instead of changing ξ1 or
ξn−1 to another pole, we would like to know whether it is possible to move them
outside of C̄: we would like to deflate an eigenvalue. To this end we need to create
two zeros with a single operation such that the pair is no longer proper. We discuss
the situation at the bottom-right; the top-left corner proceeds similarly. Suppose we
would like to simultaneously introduce zeros in the final subdiagonal positions, which
are an,n−1 and bn,n−1. This is possible if the matrix [

an,n−1 ann

bn,n−1 bnn
] is of rank 1. If this
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is the case, we can simultaneously annihilate the subdiagonal elements by operating401

on the final two columns of (A,B). In our experiments we assume the matrix to be402

of rank 1 if σmin/σmax < εm.403

4.3 Numerical experiment. We apply the RQZ method on two sets of prob-404

lems: random matrix pairs and two problems from fluid dynamics. We are interested405

in the accuracy and speed.406

Random matrix pairs. We test the single shift RQZ algorithm on 9 randomly407

generated, complex-valued matrix pairs with sizes ranging from 100 to 1000. The408

results are averaged over 10 runs. The pairs are first reduced to Hessenberg pairs409

with all poles at infinity, implying that no additional computational work has been410

done compared to the reduction phase of the QZ method. The shift is always taken411

as the Wilkinson shift. The poles are selected according to four different strategies:412

poles at infinity, poles at zero, random poles, and poles chosen as the Wilkinson shift413

from the upper-left 2 × 2 block. The last choice is called the Wilkinson pole.414

The results are summarized in Figures 8 and 9. The left pane of Figure 8 shows415

the relative backward errors ‖Â − Q∗AZ‖2/‖A‖2 and ‖B̂ − Q∗BZ‖2/‖B‖2 for the416

reduction to a Hessenberg pair (lines without markers) and the backward error on the417

Schur form for the four different pole strategies. The backward error is small in all418

cases. The right pane shows the average number of iterations per eigenvalue. Clearly,419

the Wilkinson pole requires the least number of iterations per eigenvalue. It requires420

on average 1.5% less iterations than the classic choice of poles at infinity. Random421

poles and poles at zero perform the worst.422
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Fig. 8. On the left the relative backward errors related to the reduction to a Hessenberg pair (no
markers) and to the Schur form (with markers) are demonstrated. The error on A is represented
with a dashed line and the error on B with a full line. On the right we see the average number of
iterations per eigenvalue for the four different pole strategies.
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Fig. 8. On the left the relative backward errors related to the reduction to a Hessenberg pair (no
markers) and to the Schur form (with markers) are demonstrated. The error on A is represented
with a dashed line and the error on B with a full line. On the right we see the average number of
iterations per eigenvalue for the four different pole strategies.

is the case, we can simultaneously annihilate the subdiagonal elements by operating
on the final two columns of (A,B). In our experiments we assume the matrix to be
of rank 1 if σmin/σmax < εm.

4.3. Numerical experiment. We apply the RQZ method on two sets of prob-
lems: random matrix pairs and two problems from fluid dynamics. We are interested
in the accuracy and speed.

Random matrix pairs. We test the single shift RQZ algorithm on 9 randomly
generated, complex-valued matrix pairs with sizes ranging from 100 to 1000. The
results are averaged over 10 runs. The pairs are first reduced to Hessenberg pairs
with all poles at infinity, implying that no additional computational work has been
done compared to the reduction phase of the QZ method. The shift is always taken
as the Wilkinson shift. The poles are selected according to four different strategies:
poles at infinity, poles at zero, random poles, and poles chosen as the Wilkinson shift
from the upper-left 2× 2 block. The last choice is called the Wilkinson pole.

The results are summarized in Figures 8 and 9. The left pane of Figure 8 shows
the relative backward errors ‖Â − Q∗AZ‖2/‖A‖2 and ‖B̂ − Q∗BZ‖2/‖B‖2 for the
reduction to a Hessenberg pair (lines without markers) and the backward error on the
Schur form for the four different pole strategies. The backward error is small in all
cases. The right pane shows the average number of iterations per eigenvalue. Clearly,
the Wilkinson pole requires the least number of iterations per eigenvalue. It requires
on average 1.5% less iterations than the classic choice of poles at infinity. Random
poles and poles at zero perform the worst.

Figure 9 shows the total number of pole swaps scaled with n2. The scaling
factor is used since the number of pole swaps per iteration is O(n) and the num-
ber of iterations is also O(n). This measure of performance depends heavily on the
positions where deflations occur and as such gives a much better view on the algo-
rithmic behavior. The order of the four strategies remains the same, but the gains
with Wilkinson poles increase up to 4%. This signals the occurrence of deflations at
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the obstacle flow problem are shown.

spots other than only in the lower-right corner as is typically the case in the classical
setting.

IFISS problems. In this experiment we apply the RQZ method on two problems
from fluid dynamics generated with IFISS [6, 7]. The first problem originates from
a model for the flow in a unit-square cavity, and the second problem comes from
a model for the flow around an obstacle. Both models are discretized, resulting in
two real, generalized eigenvalue problems. The cavity flow problem is of size 2467,
and the obstacle flow problem of size 2488. We applied the single shift RQZ method
after initial reduction to Hessenberg form with poles at infinity. Wilkinson shifts are
employed in all cases. We used poles at infinity and Wilkinson poles. The spectra of
the matrices is shown in Figure 10.

The results of the experiment are summarized in Table 1. It lists the relative
backward error on the Schur form for both A and B for both problems and the two
pole strategies. The backward error is very good in all cases. The table also lists
the average iterations per eigenvalue and how this compares relatively to the result of
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Table 1
Results of the RQZ method on the IFISS problems. The first column lists the problem, and the

second column the pole strategy. Columns 3 and 4 present the backward error on A and B, columns
5 and 6 the average number of iterations and performance compared to QZ, and columns 7 and 8
the total number of swaps and the performance compared to QZ.

Problem pole error A error B it/n % swaps/n2 %

Cavity flow
∞ 7.5 · 10−15 4.4 · 10−15 2.49 100 0.446 100
Wilk. 7.8 · 10−15 4.1 · 10−15 2.34 94.2 0.443 99.3

Obstacle flow
∞ 9.2 · 10−15 7.8 · 10−15 2.54 100 0.617 100
Wilk. 8.8 · 10−15 7.8 · 10−15 2.36 93.0 0.595 96.3

poles at infinity. We observe that the average number of swaps and iterations when
employing Wilkinson poles is always below the numbers generated by the classical
approach.

4.4. Tightly packed shifts. The single shifted RQZ method is, just like the
classical QZ method, sequential in nature and not very cache efficient. To enhance
cache performance one can go for multishift and chase m shifts simultaneously or one
can chase m single shifts as close as possible after each other. Since the theory in
this manuscript is not suited for a multishift setting we will confine ourselves to a
description and numerical experiment for tightly packed shifts.

Assume we would like to chase m tightly packed shifts, which are typically the
eigenvalues of the bottom-right m×m block of (A,B). These shifts are introduced
one after another in the Hessenberg pair. The first shift is introduced and swapped
down one row. Next the second shift is introduced and both shifts need to be swapped
down a single row, starting with the lower-right one first. As a result there is space to
introduce the third shift, and the procedure continues. After having introduced the
shifts, the first m subdiagonal elements of the pair (A,B) link to these shifts.

In order to chase the block of m shifts one needs to swap all shifts down one row,
starting again with the one in lower-right corner first. In total there are m equivalence
transformations which should be accumulated to update the necessary parts of the
matrices in a cache efficient manner.

The finalization phase commences when the shifts occupy the last subdiagonal
positions in the Hessenberg pair. We can now introduce m new poles. The first
new pole is introduced in the final subdiagonal element and swapped up m positions
thereby swapping all remaining shifts down. The second new pole is now introduced
and this course of action continues until the new poles occupy the last m subdiagonal
elements.

We test the tightly packed RQZ method on randomly generated matrix pairs of
size 1000 that are first reduced to Hessenberg pairs with poles at infinity. We run the
RQZ method for shift batches of sizes m = 2, 4, 8, 16, 32. The results are averaged
over 2 runs. The poles are selected following three criteria: always at infinity (classical
QZ), m times the Wilkinson pole of the leading 2×2 block, or as the eigenvalues of
the leading m×m block, the Rayleigh poles.

Figure 11 displays the performance in terms of the average number of iterations
per eigenvalue (left) and total number of swaps scaled with n2 (right) in function of
the batch size m for the three types of poles. We observe that the number of iterations
remains constant up to a batch size of 16 but increases significantly for m = 32. This
effect is most pronounced with the Wilkinson and Rayleigh poles. Also in terms of
the number of swaps the poles at infinity are the most efficient choice for m = 32. We
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Fig. 11. On the left the average number of iterations per eigenvalue is depicted in function of
batch size m for three different pole strategies. On the right the average number of swaps scaled with
n2 in function of the batch size m. These results are for the random problem.
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Fig. 12. On the left the average number of iterations per eigenvalue is depicted in function of
batch size m for three different pole strategies. On the right the average number of swaps scaled with
n2 is depicted in function of the batch size m. These are the results for the random problems with
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attribute this effect to the spectrum of the randomly generated problems. All, except
typically one, of the eigenvalues are located in one cluster around zero. Likely, due to
the increased batch size, some of the Wilkinson and Rayleigh poles will somehow be
too close to each other, thereby deteriorating the convergence.

Therefore, we have repeated this experiment with randomly generated matrix
pairs of size 1000 having two equally sized clusters of eigenvalues centered around 0
and 10. The results are shown in Figure 12. Now the Wilkinson and Rayleigh poles
outperform the poles at infinity in terms of total number of swaps for all batch sizes.

We conclude that we can pack the shifts tightly without a significant degradation
in convergence behavior. The advantages of allowing pole selection remain but become
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more problem specific. A cache efficient implementation as well as a good criterion
to pick the poles is, however, future work.

5. Implicit Q theorem. In this section we prove the following implicit Q the-
orem for proper Hessenberg pairs justifying the implicit approach since the result of
a rational QZ step is uniquely determined.

Theorem 5.1 (implicit Q theorem for proper Hessenberg pairs). Let (A,B) be a
regular matrix pair and let Q̂, Q̌, Ẑ, Ž be unitary matrices with Q̂e1 = σQ̌e1, |σ|= 1,
such that

(Â, B̂) = Q̂∗(A,B)Ẑ and (Ǎ, B̌) = Q̌∗(A,B)Ž

are both proper Hessenberg pairs having both the same pole tuple Ξ = (ξ1, . . . , ξn−1),
ξi ∈ C̄, with the poles different from the spectrum of the pair.

Then the pairs (Â, B̂) and (Ǎ, B̌) are essentially identical, meaning that

(4) Â = D∗1ǍD2 and B̂ = D∗1B̌D2

with D1 and D2 unitary diagonal matrices.

The implicit Q theorem guarantees that the unitary equivalence transformations,
which are implicitly applied in the direct reduction to a Hessenberg pair and in a
rational QZ step, are essentially unique. Once the reduction or the rational QZ step
is initiated, the outcome is determined.

The remainder of this section contains all ingredients to prove this theorem.
Various related implicit Q theorems already exist. Vandebril, Van Barel, and Mas-
tronardi [27] provide one for semiseparable plus diagonal matrices linked to rational
Krylov spaces. Pranic, Mach, and Vandebril [15] formulate a variant for extended
Hessenberg plus diagonal matrices linked to general rational Krylov subspaces as did
Berljafa and Güttel [2] for (rectangular) Hessenberg pairs.

The proof we provide here significantly differs from the one by Berljafa and Güttel,
who rely on direct computations and utilize the invertibility of B to formulate the
theory for the single matrix setting. We make use of the properties of the associated
Krylov matrices, as done by Watkins for the classical case [33]; this allows us to easily
prove that the rational QZ algorithm performs nested subspace iteration driven by
rational functions.

5.1. Rational Krylov matrices and subspaces. We define rational Krylov
matrices generated by a matrix pair (A,B), a vector v, and a driving rational function
determined by shifts P and poles Ξ. These rational Krylov matrices span Krylov sub-
spaces, which, for consistency, we will name rational Krylov subspaces. The descrip-
tion holds for regular matrix pairs, so the matrices do not need to be of Hessenberg
form.

For the aim of a concise notation we introduce two elementary rational matrices
generated from the pair (A,B) with shift % = µ/ν ∈ C̄ and pole ξ = α/β ∈ C̄:

M(%, ξ) = (νA−µB)(βA−αB)−1,

N(%, ξ) = (βA−αB)−1(νA−µB).
(5)

We assume, throughout the remainder of the text, that the shift is different from the
pole % 6= ξ and since we take inverses, the pole may not be an eigenvalue ξ /∈ Λ.
Notice that M(%, ξ) and N(%, ξ) represent an entire class of matrices generated by
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parameters that result in the correct shift and pole. These are all scalar multiples of
one another and as the theory remains scale invariant, every nontrivial representative
is fine.

We remark that in the case B is invertible the following relations hold:

M(%, ξ) = (νAB−1 − µI)(βAB−1 − αI)−1,

N(%, ξ) = (βB−1A− αI)−1(νB−1A− µI).
(6)

This could be helpful to link this analysis to existing theorems of Berljafa and Güttel
[2] and Watkins [33].

The elementary rational matrices are used to define rational Krylov matrices.

Definition 5.2 (rational Krylov matrices). Let (A,B) ∈ Cn×n be a regular
matrix pair, v ∈ Cn a nonzero vector, Ξ = (ξ1, . . . , ξk−1), ξi ∈ C̄, the pole tuple with
the poles different from the spectrum, and P = (%1, . . . , %k−1), %i ∈ C̄, the tuple of
shifts distinct from the poles, with k ≤ n. The corresponding rational Krylov matrices
are defined as

Krat
k (A,B,v,Ξ, P ) =

[
v,M(%1, ξ1)v,M(%2, ξ2)M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v

]
,

Lrat
k (A,B,v,Ξ, P ) =

[
v, N(%1, ξ1)v, N(%2, ξ2)N(%1, ξ1)v, . . . ,

k−1∏
i=1

N(%i, ξi)v

]
.

(7)

The following properties of the elementary rational matrices are frequently used
in the remainder of the text.

Lemma 5.3. The elementary rational matrices (5) satisfy the following:

I. Commutativity: For shifts %, %̂ different from the poles ξ, ξ̂,

M(%, ξ) M(%̂, ξ̂) = M(%̂, ξ̂) M(%, ξ),

N(%, ξ) N(%̂, ξ̂) = N(%̂, ξ̂) N(%, ξ).
(8)

II. Repositioning shifts: For shifts %, %̂ different from the poles ξ, ξ̂,

M(%, ξ) M(%̂, ξ̂) = M(%̂, ξ) M(%, ξ̂),

N(%, ξ) N(%̂, ξ̂) = N(%̂, ξ) N(%, ξ̂).
(9)

III. Inverse: If the shift is not an eigenvalue, % /∈ Λ, and different from the pole,
% 6= ξ, then

M(%, ξ)−1 = M(ξ, %),

N(%, ξ)−1 = N(ξ, %).
(10)

IV. Shift invariance: For every nonzero vector v ∈ Cn, and parameters %, %̂ 6= ξ,

R(v, M(%, ξ)v) = R(v, M(%̂, ξ)v),

R(v, N(%, ξ)v) = R(v, N(%̂, ξ)v).
(11)

Proof. If B is invertible, properties I and II of the lemma follow from (6) and
the property that every matrix commutes with its shifted inverse. For singular B the
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same result follows from an elementary continuity argument. Property III is trivial.
For property IV, we consider first the case that ξ 6= ∞. Assuming % 6= ∞, it follows
from (5) that

M(%, ξ) =
ν

β
(I + (ξ − %)B(A− ξB)−1) ≡ I + (ξ − %)M(∞, ξ),

N(%, ξ) =
ν

β
(I + (ξ − %)(A− ξB)−1B) ≡ I + (ξ − %)N(∞, ξ).

(12)

The second part of the equation is considered as an equivalence: both sides be-
long to the same class of rational matrices but differ by a finite, nonzero scalar fac-
tor. It is clear that both R(v,M(%, ξ)v) = R(v,M(∞, ξ)v) and R(v, N(%, ξ)v) =
R(v, N(∞, ξ)v). This equality holds trivially in the case % = ∞. Consequently, the
shift invariance property is satisfied for ξ 6= ∞. In the case ξ = ∞, assuming % 6= 0,
(5) reads

(13) M(%,∞) ≡ %I −M(0,∞), N(%,∞) ≡ %I −N(0,∞),

and the shift invariance also follows for a pole at ∞ as the shift can always be moved
to zero. This is trivial in the case % = 0.

Theorem 5.4 (nested shift invariance). For every nonzero vector v ∈ Cn, all
shifts %i different from all poles ξj for i, j from 1 to k−1, and an alternative shift %̂
different from all poles, k ≤ n,

(14)

R
(
v,M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v

)
= R

(
v,M(%̂, ξ1)v, . . . ,

k−1∏
i=1

M(%̂, ξi)v

)
,

R
(
v, N(%1, ξ1)v, . . . ,

k−1∏
i=1

N(%i, ξi)v

)
= R

(
v, N(%̂, ξ1)v, . . . ,

k−1∏
i=1

N(%̂, ξi)v

)
.

Proof. We prove the first relation of (14) by induction. The proof for the second
relation proceeds similarly. The case k = 1 is trivial, and the case k = 2 is equal to
the shift invariance property IV of Lemma 5.3. Assume now Theorem 5.4 holds up
to index k and denote this subspace as Uk. We remark that (14) also implies that

(15) R
(
v,M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v

)
= R

(
v,M(%̂1, ξ1)v, . . . ,

k−1∏
i=1

M(%̂i, ξi)v

)

for arbitrary shifts %̂i different from all poles. The subspace Uk+1 is equal to

Uk+1 = R
(
v, M(%1, ξ1)v, . . . ,

k∏
i=1

M(%i, ξi)v

)
= Uk +R

(
k∏
i=1

M(%i, ξi)v

)
.

By the induction hypothesis, the result holds for Uk. We now modify the additional
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term in the subspace Uk+1 to prove the result:

Uk+1 = Uk +M(%k, ξk)R
(
k−1∏
i=1

M(%i, ξi)v

)

= Uk +M(%̂, ξk)R
(
k−1∏
i=1

M(%i, ξi)v

)

= Uk +M(%k−1, ξk)R
(
M(%̂, ξk−1)

k−2∏
i=1

M(%i, ξi)v

)

= Uk +M(%̂, ξk)R
(
M(%̂, ξk−1)

k−2∏
i=1

M(%i, ξi)v

)

= Uk +M(%k−2, ξk)R
(
M(%̂, ξk−2)M(%̂, ξk−1)

k−3∏
i=1

M(%i, ξi)v

)
= · · ·

= Uk +R
(

k∏
i=1

M(%̂, ξi)v

)
.

The second equality above applies the shift invariance property IV of Lemma 5.3
to change %k to %̂. This is permitted as

∏k−1
i=1 M(%i, ξi)v is a vector in Uk. In the third

equality the shifts %̂ and %k−1 are interchanged based on property II of Lemma 5.3.
The fourth equality again applies the shift invariance property IV to change %k−1 to

%̂. This is again permitted: M(%̂, ξk−1)
∏k−2
i=1 M(%i, ξi)v is a vector in Uk based on

the induction hypothesis and (15). This reasoning is continued in the fifth equality,
where %̂ and %k−2 are interchanged, until eventually all shifts are changed to %̂ in the
final equality.

We can now define the rational Krylov subspaces as the column spaces of the
rational Krylov matrices from Definition 5.2. It follows directly from the nested shift
invariance property of Theorem 5.4 that these subspaces are independent of the choice
of P.

Definition 5.5 (rational Krylov subspaces). We define the rational Krylov sub-
spaces Krat

k and Lrat
k , k ≤ n, associated with the regular pair (A,B) ∈ Cn×n, a vector

v ∈ Cn, and pole tuple Ξ = (ξ1, . . . , ξk−1), assuming the poles are different from the
eigenvalues as

Krat
k (A,B,v,Ξ) = R(Krat

k (A,B,v,Ξ,P)),

Lrat
k (A,B,v,Ξ) = R(Lrat

k (A,B,v,Ξ,P)),
(16)

where the shift tuple P is freely chosen, assuming all shifts are different from all poles.

The two rational Krylov subspaces reduce to the same subspace if B is the identity
matrix which is in agreement with earlier definitions. The rational Krylov subspaces
satisfy the following elementary properties.

Lemma 5.6 (properties of rational Krylov subspaces). The rational Krylov sub-
spaces Krat and Lrat generated from (A,B) ∈ Cn×n, v ∈ Cn, and Ξ = (ξ1, . . . , ξn−1),
assuming all poles are different from the eigenvalues, satisfy the following properties.
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I. They form a sequence of nested subspaces,

(17) Krat
1 ⊆ Krat

2 ⊆ · · · ⊆ Krat
n and Lrat

1 ⊆ Lrat
2 ⊆ · · · ⊆ Lrat

n .

II. For k = 1, . . . , n−1, with the shift %̂ different from all eigenvalues and poles,
and an alternative shift %̌ 6= %̂, we get
(18)

Krat
k (A,B,v,Ξ) =

k−1∏
i=1

M(%̂, ξi) Kk(M(%̌, %̂),v) = Kk
(
M(%̌, %̂),

k−1∏
i=1

M(%̂, ξi) v

)
,

Lrat
k (A,B,v,Ξ) =

k−1∏
i=1

N(%̂, ξi) Kk(N(%̌, %̂),v) = Kk
(
N(%̌, %̂),

k−1∏
i=1

N(%̂, ξi) v

)
,

which connects rational Krylov subspaces with regular Krylov subspaces.
III. For k = 1, . . . , n−1, and %k /∈ Ξ,

M(%k, ξk) Krat
k (A,B,v,Ξ) ⊆ Krat

k+1(A,B,v,Ξ),

N(%k, ξk) Lrat
k (A,B,v,Ξ) ⊆ Lrat

k+1(A,B,v,Ξ).
(19)

IV. If, for k < n, Krat
k = Krat

k+1 or Lrat
k = Lrat

k+1, the subspaces become, respectively,
M - or N -invariant.

Proof. The nestedness follows directly from the definition. To prove the second
property we rely on Theorem 5.4,

Krat
k (A,B,v,Ξ) = R

(
v,M(%̂, ξ1)v, . . . ,

k−1∏
i=1

M(%̂, ξi)v

)

=

k−1∏
i=1

M(%̂, ξi) R
(
k−1∏
i=1

M(ξi, %̂)v,

k−1∏
i=2

M(ξi, %̂)v, . . . , v

)

=

k−1∏
i=1

M(%̂, ξi) R
(
k−1∏
i=1

M(%̌, %̂)v,

k−1∏
i=2

M(%̌, %̂)v, . . . , v

)

=

k−1∏
i=1

M(%̂, ξi) Kk(M(%̌, %̂),v).

The first equality is the definition with P = (%̂, . . . , %̂). The second equality extracts
the last rational term. The third equality applies the nested shift invariance property
of Theorem 5.4 to change all shifts ξi to %̌. We end up with a Krylov subspace in the
last equality. The result for Lrat is proved in a similar way. The third property follows
from the second property and the nestedness of Krylov subspaces, setting %̂ = %k. The
fourth property follows from (19) by imposing Krat

k = Krat
k+1 or Lrat

k = Lrat
k+1.

We remark that property II states that rational Krylov subspaces are nothing
other than Krylov subspaces whose starting vector is modified by a rational function
determined by the poles Ξ.

5.2. Proper Hessenberg pairs and rational Krylov. In the previous section
(A,B) could be any regular pair. Now we’ll see that if (A,B) is a proper Hessenberg
pair, the rational Krylov subspaces and matrices have a special structure.
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Theorem 5.7. Let (A,B) ∈ Cn×n be a proper Hessenberg pair having poles Ξ =
(ξ1, . . . , ξn−1) distinct from the eigenvalues, Then for k from 1 to n,

(20) Krat
k (A,B, e1, (ξ1, . . . , ξk−1)) = Ek,

while for k from 1 to n−1,

(21) Lrat
k (A,B, e1, (ξ2, . . . , ξk)) = Ek.

Proof. We prove the results by induction on the subspace dimension. The case
k = 1 is trivial for both statements. To prove (20), assume the result holds up to
dimension k ≤ n−1,

Krat
k (A,B, e1, (ξ1, . . . , ξk−1)) = Ek.

From the nestedness of rational Krylov subspaces, we have by induction

Ek ⊆ Krat
k+1(A,B, e1, (ξ1, . . . , ξk)).

It remains to be shown that ek+1 ∈ Krat
k+1(A,B, e1, (ξ1, . . . , ξk)). From (19) and the

induction hypothesis we deduce

(22) M(%k, ξk) Ek ⊆ Krat
k+1(A,B, e1, (ξ1, . . . , ξk))

for %k /∈ Ξ. Now consider the vector kk = (βkA−αkB)ek with αk/βk = ξk. As
βkA− αkB is an upper Hessenberg matrix with a zero in position (k+1, k), kk ∈ Ek.
It follows that

kk+1 = M(%k, ξk) kk = (νkA−µkB)(βkA−αkB)−1 kk = (νkA−µkB) ek

is a vector in Ek+1 with kk+1 6= 0 and by (22), kk+1 ∈ Krat
k+1. This proves the first

result.
In order to prove (21), we can start in a similar way. Assume the result holds

up to dimension k < n−1.3 We get from the nestedness of rational Krylov subspaces
and the induction hypothesis that

Ek ⊆ Lrat
k+1(A,B, e1, (ξ2, . . . , ξk+1)).

From (19) and the induction hypothesis we deduce

N(%k+1, ξk+1) Ek ⊆ Lrat
k+1(A,B, e1, (ξ2, . . . , ξk+1))

for %k+1 /∈ Ξ. To complete the proof, we need to show as before that there exists a pair
of vectors `k, `k+1, with `k ∈ Ek and `k+1 ∈ Ek+1 whose (k+1)st element `k+1 6= 0,
that are related as

(23) `k+1 = N(%k+1, ξk+1) `k = (βk+1A−αk+1B)−1(νk+1A−µk+1B) `k.

An explicit construction is not possible in this case. Nonetheless, by (23) we have
that (`k, `k+1) must satisfy

(βk+1A−αk+1B) `k+1 = (νk+1A−µk+1B) `k.

3For Krat
k , k+1 can be as large as n since (20) goes up to ξk−1. For Lratk , k+1 is limited to n−1

as we don’t want to run out of poles.
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From properties I and II of Lemma 2.2, we have that the matrix βk+1A − αk+1B is
an upper Hessenberg matrix that admits a block upper triangular partition with a
leading block of size (k+1)×(k+1), while the matrix νk+1A−µk+1B is a proper upper
Hessenberg matrix since the shift %k+1 is different from all the poles. Observe that
all vectors `k ∈ Ek would lead to a vector `k+1 with element `k+1 = 0 if and only if
the first k columns of (βk+1A−αk+1B) would span the same subspace as the first k
columns of (νk+1A−µk+1B). It follows from properties III and IV of Lemma 2.2 that
this cannot be true. We conclude that a valid pair (`k, `k+1) must exist.

A direct corollary of the theorem considers the structure of rational Krylov ma-
trices generated from proper Hessenberg pairs.

Corollary 5.8. Let (A,B) ∈ Cn×n be a proper Hessenberg pair with poles Ξ =
(ξ1, . . . , ξn−1) different from the eigenvalues of (A,B) and let (%1, . . . , %n−1) be a shift
tuple different from the poles. Then, for k from 1 to n,

Krat
k (A,B, e1, (ξ1, . . . , ξk−1), (%1, . . . , %k−1)),

and, for k from 1 to n−1,

Lrat
k (A,B, e1, (ξ2, . . . , ξk), (%2, . . . , %k)),

are upper triangular matrices with nonvanishing diagonal elements.

5.3. Proof of the implicit Q theorem. We are ready to prove Theorem 5.1.

Proof. Choose a tuple of n−1 shifts P different from the poles Ξ. Corollary 5.8
states that Krat

n (Â, B̂, e1,Ξ,P) and Krat
n (Ǎ, B̌, e1,Ξ,P) are n×n nonsingular upper

triangular matrices. The elementary rational matrix M(%, ξ) is transformed via Q̂
and Q̌ to M̂(%, ξ) = Q̂∗ M(%, ξ) Q̂ and M̌(%, ξ) = Q̌∗ M(%, ξ) Q̌.

It follows that

Q̂Krat
n (Â, B̂, e1,Ξ,P)

= Q̂

[
e1 M̂(%1, ξ1) e1 . . .

(
n−1∏
i=1

M̂(%i, ξi)

)
e1

]

= Q̂

[
e1 Q̂

∗M(%1, ξ1)Q̂ e1 . . . Q̂∗
(
n−1∏
i=1

M(%i, ξi)

)
Q̂ e1

]

=

[
q̂1 M(%1, ξ1) q̂1 . . .

(
n−1∏
i=1

M(%i, ξi)

)
q̂1

]

= σ

[
q̌1 M(%1, ξ1) q̌1 . . .

(
n−1∏
i=1

M(%i, ξi)

)
q̌1

]
= σQ̌Krat

n (Ǎ, B̌, e1,Ξ,P).

Since the upper triangular matrices Krat
n are nonsingular, the uniqueness of the QR

factorization implies the existence of a unitary diagonal matrix D1 such that Q̂ =
Q̌D1.

It remains to prove that a similar relation holds for the matrices Ẑ and Ž. Let
us first prove that Ẑ and Ž also share a first column up to unimodular scaling. From
the relations (β1Â − α1B̂) = Q̂∗(β1A−α1B)Ẑ and (β1Ǎ − α1B̌) = Q̌∗(β1A−α1B)Ž
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with ξ1 = α1/β1, it follows that

ẑ1 = Ẑe1 = (β1A−α1B)−1Q̂(β1Â− α1B̂)e1,

ž1 = Že1 = (β1A−α1B)−1Q̌(β1Ǎ− α1B̌)e1.
(24)

Since both (β1Â− α1B̂)e1 and (β1Ǎ− α1B̌)e1 reduce to a scalar multiple of e1 and
Q̂e1 = σQ̌e1 we get ž1 = σ̃ẑ1. Using Corollary 5.8 and similar reasoning as before,
it is shown that the following two QR factorizations are equal:

Ẑ Lrat
n−1(Â, B̂, e1,Ξs,Ps) = σ̃ŽLrat

n−1(Ǎ, B̌, e1,Ξs,Ps)

with Ξs = (ξ2, . . . , ξn−1) and Ps = (%2, . . . , %n−1). In this case the Ln−1 matrices are
of size n×n−1. Uniqueness of the QR factorization implies essential uniqueness of
the first n−1 columns of Ẑ and Ž. Nonetheless also the last column of Ẑ and Ž are
essentially the same as they are orthogonal to the first n−1 columns. We conclude
that Ẑ = ŽD2, with D2 a unitary diagonal matrix.

When the Hessenberg pair is not proper, uniqueness can only be guaranteed up to
the pole that causes the problem. This is similar to the Hessenberg case. In practice
this is in fact good news as a breakdown signals a deflation.

6. Implicit rational subspace iteration. It is well-known that Francis’s QR
algorithm [8, 9] effects nested subspace iteration with a change of coordinate system
driven by polynomial Krylov subspaces [28, Theorem 6.3], [34, p. 396]. This result is
generalized in this section for the rational QZ method.

Starting with a proper Hessenberg pair (A,B) with Ξ = (ξ1, . . . , ξn−1), a single

iteration of the rational QZ method with shift % and new pole ξ̂n−1 results in a new
proper Hessenberg pair,

(Â, B̂) = Q∗ (A,B)Z,

with Ξ̂ = (ξ2, . . . , ξn−1, ξ̂n−1). This equivalence transformation simultaneously per-
forms two similarity transformations on the matrices,

(25) M̂(%, ξ) = Q∗M(%, ξ)Q and N̂(%, ξ) = Z∗N(%, ξ)Z

for all % and ξ.
The following theorem formalizes the convergence behavior of the RQZ method.

Theorem 6.1. Consider a single RQZ step (Â, B̂) = Q∗ (A,B)Z with shift %,

pole tuple Ξ = (ξ1, . . . , ξn−1) prior to the RQZ step, and Ξ̂ = (ξ2, . . . , ξn−1, ξ̂n−1)
afterward. Assume all poles are different from the eigenvalues, and the shift % is
different from all eigenvalues and poles. For k = 1, . . . , n−1, this effects subspace
iteration driven by M(%, ξk) and N(%, ξk+1), and we get

(26) R(Q:,1:k) = M(%, ξk) Ek and R(Z:,1:k) = N(%, ξk+1) Ek

with ξn := ξ̂n−1. The change of coordinate system maps both R(Q:,1:k) and R(Z:,1:k)
back to Ek.



966 DAAN CAMPS, KARL MEERBERGEN, AND RAF VANDEBRIL

Proof. We make use of the properties of Lemmas 5.3 and 5.6, Theorem 5.7, (25),
and q1 = γM(%, ξ1) e1 (equation (3)). We get

R(Q:,1:k) = Q Ek = QKrat
k (Â, B̂, e1, Ξ̂)

= Q

k∏
i=2

M̂(%, ξi) · Kk(M̂(%̌, %), e1)

=

k∏
i=2

M(%, ξi) · Kk(M(%̌, %), Qe1)

=

k∏
i=2

M(%, ξi) · Kk(M(%̌, %),M(%, ξ1)e1)

= M(%, ξk)

k−1∏
i=1

M(%, ξi) · Kk(M(%̌, %), e1)

= M(%, ξk) Ek.
The first equality is clear, and the second equality uses Theorem 5.7. The third equal-
ity applies part II of Lemma 5.6. The fourth equality relies on (25) to change from M̂
to M . The fifth equality uses the expression for q1, the sixth uses the commutativity
property, and the last equality again applies Lemma 5.6 and Theorem 5.7.

The second result follows a similar reasoning. The only difference is the relation
between z1 and e1. Starting from the same argument as in (24) we get, for some
constants γ, γ̌, and γ̃,

z1 = γ(β2A−α2B)−1q1 = γ̌ (β2A−α2B)−1M(%, ξ1) e1 = γ̃ N(%, ξ2) e1.

A single shifted RQZ step will execute a QR step with shift % on the entire space
simultaneously with RQ steps having shifts ξi on selected subspaces. The shift % is
rapidly moving from top to bottom and thus affects all subspaces. The poles on the
other hand are slowly moving upward, one row during each step, and as such do not
act on all subspaces in a single RQZ step. The shifts will rapidly initiate convergence
at the bottom, and the poles slowly push converged eigenvalues to the top. This is an
explanation of why, in the classical QZ algorithm, the zero eigenvalues in B appear
at the top: they are pushed there by the poles at infinity. Moreover, it is also clear
from the analysis that picking a shift equal to a pole will lead to cancellation in some
of the factors thereby slowing down convergence.

Note that in the formulation of Theorem 6.1 the shift and poles are assumed to
be different from the eigenvalues of the matrix pair. This is imposed to ensure that
the required inverses exist. However, in practical implementations, these parameters
will typically converge toward an eigenvalue. This is in fact a desirable situation as
it will lead to deflations.

In the QZ algorithm [16], all poles are at ∞ and the two driving functions reduce
to M(%,∞) and N(%,∞) which is equivalent to AB−1−%I and B−1A−%I. In the RQZ
method, the poles can be chosen freely and as such they can be utilized to influence
the convergence of the method as was illustrated in the numerical experiments of
subsections 3.2 and 4.3. Note that, as the poles only shift one row up during every
RQZ step, it takes n−1 iterations before a pole has moved from the bottom to the
top and has influenced all vectors in the subspace iteration.

To further clarify the result of Theorem 6.1 consider the simplified case where
all the poles of the Hessenberg pair are equal to the same value ξ different from the
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(a) Filter with ξ =∞
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(b) Filter with ξ = 0.1 + 1i

Fig. 13. Logarithm of the absolute value of the rational filter, |q(λi)s|, after s = 2 iterations
with % = −0.95, and ξ either at ∞ or at 0.1 + 1i. The eigenvalues λi are shown with circles, the
shift % is indicated with a star, and the pole with a pentagon. Darker regions agree with convergence
at the end of the pencil and lighter regions with convergence at the top of the pencil.

eigenvalues of (A,B). Assume that the RQZ algorithm is applied s times on this
proper Hessenberg pair with the same shift %. At the end of each RQZ step the last
pole is again restored to ξ. Then the subspace iterations, as considered from the initial
pair, are given by

Q : Ek →M(%, ξ)sEk, and Z : Ek → N(%, ξ)sEk.

Denote q(z) = (z−%)/(z− ξ) and let λ1, . . . , λn be the eigenvalues of the pair (A,B),
so that q(λi)

s is the rational filter that is implicitly applied during these s iterations
to λi. Assume the eigenvalues are ordered such that

|q(λ1)s|≤ |q(λ2)s|≤ · · · ≤ |q(λn−1)s|≤ |q(λn)s|,

and then the convergence factor of an eigenvalue at the end of the Hessenberg pencil
is given by |q(λ1)s|/|q(λ2)s|, while the convergence factor at the top of the Hessenberg
pencil is given by |q(λn−1)s|/|q(λn)s|. As such, a good choice of both poles and shifts
can accelerate convergence and lead to deflations.

As an example consider a problem of size 11 with eigenvalues located on the unit
circle in the complex plane. Figure 13 shows the absolute value of the rational filter
after s=2 iterations for two different choices for the rational function q. Figure 13(a)
shows the filter, q∞(z)2, with shift % = −0.95 and all the poles at ∞. This situation
corresponds to the QZ method applied twice with the same shift to a Hessenberg,
triangular pair. The shift % is located close to the eigenvalue λ1= − 1 such that
|q∞(λ1)2|= 2.5 · 10−3 is the minimal value of the filter over all eigenvalues. The
convergence factor of λ1 at the end of the pencil is approximately 8.22 · 10−3. At
the top of the pencil there is no convergence in this case as |q(λn−1)2|/|q(λn)2|=
1. Figure 13(b) shows the same experiment but this time the poles are located at
ξ = 0.1+1i which is in the vicinity of another eigenvalue. This situation corresponds
to the RQZ method applied twice with the same shift to a Hessenberg pair with
Ξ = (ξ, . . . , ξ). The rational filter, qξ(z)

2, leads to a convergence factor of λ1 at the
end of the pencil of approximately 1.21 ·10−2. The convergence of λ1 at the end of the
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pencil is slower with q2ξ compared to q2∞. However, q2ξ will also lead to convergence at

the top of the pencil as the convergence factor is |q(λn−1)2|/|q(λn)2|≈ 7.46 · 10−3. We
observe that using qξ leads to convergence of another eigenvalue, whereas q∞ does not.

It is clear that both the shifts and the poles can accelerate the convergence but
they do influence each other.

When the shifts are changed in every iteration and the poles of the Hessenberg
pair are not the same then the filter q becomes dependent on the index k and will be
a product of terms with different shifts,

(27) qk(λ) =

s∏
i=1

(λ− %i)/(λ− ξ(i)k )

with ξ
(i)
k the pole at iteration i in position k (or k+1) for Q (or Z) as shown in

Theorem 6.1.
Provided a good choice of shifts and poles is made during repeated application

of the RQZ algorithm the pair (A,B) will converge to a pair of upper triangular
matrices.

7. Filtering rational Krylov subspaces. In the last part, we will apply the
concept of the RQZ method within the rational Krylov method [18, 19, 20, 21] to filter
and restart the rational Krylov method. The rational Krylov method is an iterative
method applicable for, for example, computing a select subset of eigenvalues of large-
scale eigenvalue problems. Our formulation is in terms of a large-scale complex-valued
matrix pair (A,B) of dimension N×N .

Starting from a regular pair (A,B), a nonzero vector v ∈ CN , and a tuple of poles
Ξ = (ξ1, . . . , ξk) different from the spectrum, the rational Krylov method iteratively
constructs an orthonormal basis Vk+1 ∈ CN×k+1 of the rational Krylov subspace
Krat
k+1(A,B,v,Ξ).

It also constructs a (k+1)×k recurrence matrix pair (Hk, Gk) in Hessenberg form.
This rational Krylov Hessenberg pair contains the poles that are used in the rational
Krylov method as its subdiagonal elements: ξi = hi+1,i/gi+1,i for i from 1 to k. This
is similar to the square Hessenberg pairs that are used in the first part of this paper.
As long as the rational Krylov method does not break down, the pair (Hk, Gk) can
be considered as proper according to two out of three conditions of Definition 2.1.
The third condition concerning the linear independence of the last row of the pair
does not hold for the rectangular rational Krylov Hessenberg pencil. If the other two
conditions are satisfied, we nonetheless say that (Hk, Gk) is a proper rational Krylov
Hessenberg pair.

The rational Krylov recurrence relation,

(28) AVk+1Gk = B Vk+1Hk,

holds throughout the rational Krylov method. We refer the interested reader to [21]
for further algorithmic details on the iterative scheme.

The rational Krylov method generalizes Arnoldi’s method [1], which generates an
orthonormal basis for a standard Krylov subspace Kk+1(A,v). These Krylov meth-
ods have a growing orthogonalization cost and growing memory requirements with
increasing subspace dimension. To overcome this one could apply implicit filtering
and restart.

Sorensen [23] applied Francis’s QR algorithm to filter a standard Krylov subspace
and implicitly restart the Arnoldi iteration. The implicit QR algorithm can be applied
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RQZ 27

Krylov subspace and restart the rational Krylov iteration because both methods use851

the structure of Hessenberg pairs. Berljafa & Güttel [2, section 4.3] already proposed852

this technique of changing and swapping the poles in the RK method as a way to853

implicitly filter a rational Krylov subspace. The first algorithm to apply an implicit854

filter in the RK method is due to De Samblanx, Meerbergen, and Bultheel [5]. How-855

ever, their method relied on an explicit QZ algorithm which is quite costly and prone856

to numerical inaccuracies.857

To filter a rational Krylov subspace we can thus use the concept of the RQZ858

method. The procedure is summarized in Figure 14. The initial situation of the RK859

Hessenberg is shown in pane I on the left. In pane II, the first pole ξ1 is changed to860

a shift � by computing a unitary transformation Q such that,861

(29) q1 = γ̌(Hk − �Gk)(Hk−ξ1 Gk)
†e1 = γ̂(Hk − �Gk)e1.862

The principle is the same as described in Subsection 2.2, the only difference is that863

the inverse is replaced with the Moore-Penrose pseudoinverse (Hk−ξ1 Gk)
†.864

It is well-known [10] that xLS = (Hk−ξ1 Gk)
†b is the least squares solution of865

minimal norm ‖x‖2. As ‖γe1 − (Hk − ξ1Gk)e1‖2= 0 when γ = h11 − ξ1g11, we866

conclude that,867

(30) (Hk−ξ1 Gk)
†e1 = γe1.868

Pane II of Figure 14 further shows how the shift is swapped to the last position869

on the subdiagonal of (Hk, Gk). The end result is displayed in pane III.870
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Ǧ4

× × × ×
× × ×

× ×
×

�
b

c
d

II.

Ĥ4
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Ĝ4

× × × ×
× × ×

× ×
×

b
c
d�

III.

Fig. 14. RQZ-like procedure to change the first pole in an RK Hessenberg pair to a new shift
(Pane II) and move it to the last position in the RK Hessenberg pair (Pane II-III).

The process summarized in Figure 14 effectively updates,

(Ĥk, Ĝk) = Q∗(Hk, Gk)Z,

in such a way that the pole tuple is changed to Ξ̂ = (ξ2, . . . , ξk, �). To maintain the871

rational Krylov recurrence (28), the orthonormal basis is updated as V̂k+1 = Vk+1Q.872

This does not change the span of Vk+1, i.e. R(V̂k+1) = R(Vk+1), but the vectors873

are rearranged. The new start vector is given by:874

(31) v̂ = V̂k+1 e1 = Vk+1 q1 = γVk+1(Hk−�Gk)e1.875

The rational Krylov recurrence (28) implies,876

(32) (A−�B)Vk+1 (Hk−ξ1Gk) = (A−ξ1B)Vk+1 (Hk−�Gk).877
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Fig. 14. RQZ-like procedure to change the first pole in an rational Krylov Hessenberg pair to
a new shift (pane II) and move it to the last position in the rational Krylov Hessenberg pair (pane
II–III).

to restart Arnoldi’s method because they are both based on the Hessenberg matrix
structure. As a generalization, the RQZ algorithm can be applied to filter a rational
Krylov subspace and restart the rational Krylov iteration because both methods use
the structure of Hessenberg pairs. Berljafa and Güttel [2, section 4.3] already proposed
this technique of changing and swapping the poles in the rational Krylov method as
a way to implicitly filter a rational Krylov subspace. The first algorithm to apply an
implicit filter in the rational Krylov method is due to De Samblanx, Meerbergen, and
Bultheel [5]. However, their method relied on an explicit QZ algorithm which is quite
costly and prone to numerical inaccuracies.

To filter a rational Krylov subspace we can thus use the concept of the RQZ
method. The procedure is summarized in Figure 14. The initial situation of the
rational Krylov Hessenberg is shown in pane I on the left. In pane II, the first pole
ξ1 is changed to a shift % by computing a unitary transformation Q such that

(29) q1 = γ̌(Hk − %Gk)(Hk−ξ1Gk)†e1 = γ̂(Hk − %Gk)e1.

The principle is the same as described in subsection 2.2; the only difference is that
the inverse is replaced with the Moore-Penrose pseudoinverse (Hk−ξ1Gk)†.

It is well-known [10] that xLS = (Hk−ξ1Gk)†b is the least squares solution of
minimal norm ‖x‖2. As ‖γe1 − (Hk − ξ1Gk)e1‖2= 0 when γ = h11 − ξ1g11, we
conclude that

(30) (Hk−ξ1Gk)†e1 = γe1.

Pane II of Figure 14 further shows how the shift is swapped to the last position
on the subdiagonal of (Hk, Gk). The end result is displayed in pane III. The process
summarized in Figure 14 effectively updates,

(Ĥk, Ĝk) = Q∗(Hk, Gk)Z,

in such a way that the pole tuple is changed to Ξ̂ = (ξ2, . . . , ξk, %). To maintain the
rational Krylov recurrence (28), the orthonormal basis is updated as V̂k+1 = Vk+1Q.

This does not change the span of Vk+1, i.e., R(V̂k+1) = R(Vk+1), but the vectors
are rearranged. The new start vector is given by

(31) v̂ = V̂k+1 e1 = Vk+1 q1 = γVk+1(Hk−%Gk)e1.

The rational Krylov recurrence (28) implies

(32) (A−%B)Vk+1 (Hk−ξ1Gk) = (A−ξ1B)Vk+1 (Hk−%Gk).
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Table 2
Summary of the settings and results of the restarted rational Krylov iteration. The columns list

the maximal subspace dimension m, the restart length p, the number of wanted Ritz values `, the
tolerance tol, and the required number of restarts to reach convergence.

Problem m p ` tol # restarts

Cavity flow 40 20 8 10−7 8
Obstacle flow 60 25 7 10−7 11

Rearranging terms in (32) and combining this with (30), (31) we see that the new
starting vector is given by

(33) v̂ = γ(A−ξ1B)−1(A−%B)v.

From the uniqueness of a rational Krylov recurrence (28) [2, Theorem 3.2], it
follows that R(V̂k+1) = Krat

k+1(A,B, v̂, Ξ̂).
The filter operation is finalized by removing the last pole % from the subspace

by reducing the order of the rational Krylov recurrence by one. This means that the
trailing column and row of (Ĥk, Ĝk) are removed, as well as the last vector of V̂k+1.

With the results of sections 5 and 6 in mind it is clear how this RQZ-like procedure
applies a filter in the rational Krylov iteration.

As a numerical experiment, we revisit the two fluid flow problems of subsec-
tion 4.3. Instead of computing all eigenvalues we are now only interested in determin-
ing if the problems are stable. To this end, it is sufficient to determine the rightmost
eigenvalues of both problems and check if they are situated in the left half-plane. As
an input to the restarted rational Krylov method we have the matrix pair (A,B), a
start vector v, a tuple of poles Ξ, a maximal subspace dimension m, a restart length p,
a number of desired Ritz values `, and a tolerance tol up to which the ` Ritz values
need to be converged. The residual is determined as ‖(Hk − θGk)y‖2 with (θ,y)
the Ritz value and Ritz vector computed from (Hk, Gk), the upper k×k block of the
recurrence pencil. The iteration starts with computing an initial rational Krylov sub-
space of dimension m. If the ` rightmost Ritz values have converged up to a maximal
residual tol, the iteration is halted. Otherwise the p leftmost Ritz values are selected
as shifts, the subspace is reduced to dimension m−p by using the RQZ method to
filter the subspace, and the subspace is again expanded to full dimension m. This
procedure is repeated until the ` rightmost Ritz values have converged.

The settings and results are summarized in Table 2. In both cases, we selected
poles along the imaginary axis, Ξ = (−20i,−18i, . . . , 18i, 20i), as we expect the right-
most eigenvalue to be situated close to it.

Figure 15 shows the rightmost part of the spectrum and the converged Ritz values.
As can be seen, the method successfully converged to the correct eigenvalues within
a reasonable number of restarts.

8. Conclusion. In this paper we proposed a rational QZ algorithm for the nu-
merical solution of the dense (unsymmetric) generalized eigenvalue problem. The new
algorithm operates on matrix pairs in Hessenberg, Hessenberg form rather than the
Hessenberg, triangular form used in the classical QZ method. Hessenberg pairs link
to rational Krylov and the associated poles are encoded in the subdiagonal elements
of both Hessenberg matrices. A direct reduction method of a regular matrix pair to
Hessenberg, Hessenberg form was proposed. Moreover, we have demonstrated that
during the reduction a good choice of poles can lead to premature deflations. The iter-
ative rational QZ algorithm differs from the classical algorithm in the sense that also
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Fig. 15. Rightmost part of the spectrum of the cavity flow (left) and obstacle flow (right)
problems. The eigenvalues () and Ritz values ( ) are shown.

The iterative rational QZ algorithm differs from the classical algorithm in the sense917

that also poles can be introduced in each QZ step. Numerical experiments confirm918

that a good choice of poles allows the RQZ method to outperform the QZ algorithm919

by reducing the number of iterations per eigenvalue. The implicit chasing technique920

is justified by an implicit Q theorem, which is proved in a novel manner operating921

directly on the matrix pair and exploiting the connections with rational Krylov. Our922

theoretical analysis revealed that an RQZ iteration implicitly performs nested sub-923

space iteration driven by a pair of rational functions. Finally, we have applied the924

RQZ method as a filter in rational Krylov.925
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poles can be introduced in each QZ step. Numerical experiments confirm that a good
choice of poles allows the RQZ method to outperform the QZ algorithm by reducing
the number of iterations per eigenvalue. The implicit chasing technique is justified
by an implicit Q theorem, which is proved in a novel manner operating directly on
the matrix pair and exploiting the connections with rational Krylov. Our theoretical
analysis revealed that an RQZ iteration implicitly performs nested subspace iteration
driven by a pair of rational functions. Finally, we have applied the RQZ method as a
filter in rational Krylov.
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