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Abstract

The rational Krylov method is a powerful tool for computing a selected subset of eigenvalues in
large-scale eigenvalue problems. In this paper we study a method to implicitly apply a filter in a
rational Krylov iteration by directly acting on a QR factorized representation of the Hessenberg
pair from the rational Krylov method. This filter is used to restart the iteration, which is generally
required to limit the orthogonalization and storage costs. The contribution in this paper is three-
fold. We reformulate existing procedures in terms of operations on core transformations. This has
the advantage of improved convergence monitoring. Secondly, we demonstrate that the extended
QZ method is a special case of this more general method. Finally, numerical experiments show
the validity and the increased accuracy of the new approach compared with existing methods.
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1. Introduction.

The Arnoldi algorithm, first introduced by Arnoldi (1951) [1] and studied extensively by Saad
[2, 3, 4, 5] is the classical Krylov method. It is a projection method frequently used for solving
systems of linear equations, eigenvalue problems, matrix equations, and so forth. The Arnoldi
algorithm generates a subspace on which the problem is projected. The resulting smaller problem5

is then solved, and lifted back to its original dimensions.
The Arnoldi method has a particular convergence behavior. If we focus on eigenvalue com-

putations, it locates first well-separated extreme eigenvalues [5, 6, 7]. Computing, e.g., rightmost
eigenvalues, eigenvalues near the origin or eigenvalues in a certain region with prescribed accuracy
may be infeasible with a small number of Krylov vectors. One way to reduce the number of vectors10

is by using methods that converge faster towards a particular region of interest. Shift-and-invert
Arnoldi [8, 9, 10] uses the matrix (A− σI)

−1
to compute the eigenvalues near the ‘shift’ σ. In the

rational Krylov method (RK), introduced by Ruhe [11, 12, 13, 14, 15], the shift or pole may change
at every step in the iteration. The extended Krylov method (EK), first proposed by Druskin &
Knizhnerman (1998) [16] for the approximation of matrix functions, is a special case of the RK15

method that only uses shifts at zero and infinity.
In every step of the Arnoldi algorithm, an explicit orthogonalization of the new vector against

all previously computed basis vectors is performed. Consequently, the computational cost and
storage requirements increase as the algorithm progresses. This problem can be solved by a restart
of the Arnoldi method. Sorensen (1992) introduced the implicitly restarted Arnoldi method (IRA)20

[17]. His algorithm applies implicitly shifted QR steps on the Arnoldi Hessenberg matrix. The
IRA method was further analyzed by Morgan (1996) [18] and refined by Lehoucq & Sorensen
(1996) [19]. Stewart (2001) [20] introduced the Krylov-Schur algorithm where a proper subspace
is extracted from the Krylov subspace via the Schur decomposition. De Samblanx, Meerbergen
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& Bultheel (1997) [21] proposed an implicit restart method for rational Krylov methods. Their25

method uses an explicit QZ step on the RK Hessenberg pencil. Recently, Berljafa & Güttel [22]
proposed a method to change the poles in the RK method and noticed that this procedure can be
used to restart the RK method [22, Section 4.3]. In their paper no comparison is made with the
explicit method of De Samblanx et al. [21].

The contribution of this paper is threefold. First, we reformulate the method of Berljafa &30

Güttel in terms of operations on a QR-factorized representation of the RK Hessenberg pencil.
In this representation, the unitary matrix is stored as a sequence of core transformations. This
extends the core chasing techniques, introduced by Vandebril [23] for the dense eigenvalue problem
and further developed by Vandebril & Watkins [24, 25], beyond condensed matrices. As such it
is effectively a reformulation of the rational QZ method [26] in terms of core transformations.35

This representation allows for an efficient storage scheme of the unitary matrices and admits an
accurate deflation criterion [27]. Furthermore, we use this representation to study the structure of
the projection on a rational Krylov subspace in Lemma 3.1. Our second contribution is to show
how the special case of the extended Krylov method is linked to the more general rational Krylov
setting in Section 5.1. The final contribution is a comparison between the implicit [22] and explicit40

[21] version of the filter step. We will show that the implicit filter step is faster, more accurate,
and can outperform the method of De Samblanx et al.

The paper is organized as follows. In Section 2, we introduce the notion of Krylov subspaces
and generalize this to rational Krylov subspaces. Section 3 introduces unitary core transformations
and uses them to construct a factorized representation of the RK Hessenberg pair. In this section,45

wee also study the structure of the projection on a rational Krylov subspace. We show how the
core transformations and the poles of the RK subspace are linked and how the core transformations
can be altered to change the poles in Section 4. The gist of this paper is presented in Section 5
which explains the implicit QZ step for restarting the RK iteration based on manipulating core
transformations. Section 6 illustrates the algorithm with three numerical examples that indicate50

that the method can outperform comparable methods. Some concluding remarks are given in
Section 7

Matrices are denoted in upper-case letters (A), the element at row i and column j is denoted
as (A)i,j or ai,j , the entire column j as aj , the first j columns as Aj , vectors in boldface lower-case
(v), and matrices with one more row than columns are underlined (H). Matlab notation is used55

frequently for matrix indexing and slicing. A† is the generalized inverse of A and R(A) is the
range of A. The extended complex plane C ∪ {∞} is denoted as C̄. In C̄, we define α/0 =∞ for
any nonzero α ∈ C.

2. Polynomial, extended and rational Krylov methods.

Let A ∈ CN×N be a matrix and v ∈ CN a nonzero vector. The (m+1)st order polynomial
Krylov subspace generated by the matrix A with starting vector v is denoted by Km+1(A,v) and
defined as

Km+1(A,v) = span{v, Av, . . . , Amv}. (1)

Accurate approximations for some eigenvalues of the original matrix A can be extracted from60

Km+1, even for m � N . Here, Km+1 is shorthand notation for Km+1(A,v). It is assumed
throughout this article that all subspaces are of full dimension, therefore Km+1 is of dimension
m + 1. This implies that Km+1 is isomorphic to Pm, the set of all polynomials of degree ≤ m.
This is the justification for the term polynomial Krylov subspace.

The Krylov matrix [v, Av, . . . , Amv] is a matrix whose columns span Km+1. However, for
all practical purposes, this representation is inadequate since the consecutive vectors will point
increasingly in the direction of the dominant eigenvector. The columns of the Krylov matrix will
soon become linearly dependent, causing any numerical algorithm to break down as the subspace
is no longer expanded. The construction of an orthonormal basis of Km+1 is a standard procedure
to overcome this difficulty. This leads to the Arnoldi algorithm when A is unsymmetric [1], or the
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Lanczos three-term recurrence variant for Hermitian A [28]. For the remainder of this paper no
specific structure is assumed for A, prompting us to Arnoldi’s method. Throughout the Arnoldi
algorithm, the Arnoldi recurrence relation,

A Vm = Vm+1 Hm, (2)

holds. The columns of Vm+1 form an orthonormal basis of Km+1 and Hm is an unreduced, upper65

Hessenberg matrix; unreduced means in this context that the subdiagonal entries of Hm are
nonzero. The upper Hessenberg matrix consists of two parts: the orthogonalization coefficients
of the basis vectors in the upper triangular part and the 2-norm of the basis vectors on the
subdiagonal. Since the 2-norm of a vector is strictly larger than zero for any nonzero vector,
Hm is unreduced unless Avm ∈ Km, a lucky breakdown of the Arnoldi method. We have already70

excluded this possibility by making the assumption that subspaces are of full dimension.
From the Arnoldi recurrence relation (2) and the orthonormality of Vm+1 it follows that Hm,

the m×m top square part of Hm, is the orthogonal projection of A on Km:

Hm = V ∗m A Vm. (3)

The eigenvalues ϑk of Hm are called Ritz values and xk = Vm zk are the corresponding Ritz
vectors, where zk is the eigenvector of Hm associated with ϑk. The Ritz pairs satisfy a Galerkin
condition: (Axk − ϑk xk) ⊥ Km. Computing the Ritz values is the standard method to extract
eigenvalue estimates from Km+1. They typically converge first to extreme eigenvalues that are75

well-separated from the rest of the spectrum of A [5, 6, 7].

Over the past few decades a lot of research efforts went into generalizations of this procedure
with improved convergence on parts of the spectrum that are difficult to approximate with the
Arnoldi method. These generalizations either adjust the extraction procedure or the search-space.

Rational Krylov (RK) subspaces [11, 12, 13, 15, 22, 29] are a generalization of the second kind.
In an RK iteration, operators that are rational functions of A are used to expand the subspace.
These are matrices of the form,

M = (αA+ βI)−1(γA+ δI), (4)

with α, β, γ, δ parameters that can change in every iteration. M is a Möbius transformation of A80

with pole ξ at −β/α and zero % at −δ/γ. If α = 0 the pole is said to be at ∞, likewise the zero is
at ∞ if γ = 0. Changing the position of the zero % does not alter the subspace, but changing the
pole ξ does change the span of the subspace. It is clear that one should choose ξ 6= % as otherwise
M reduces to the identity matrix and that ξ cannot coincide with an eigenvalue of A as otherwise
M is undefined.85

Let us formally define a rational Krylov subspace.

Definition 2.1. Given a matrix A ∈ CN×N , a nonzero vector v ∈ CN and a tuple of poles
Ξ = (ξ1, . . . , ξm) with every ξi ∈ C̄ \ Λ(A), the (m+1)st order rational Krylov subspace is defined
as,

Krat
m+1(A,v,Ξ) = Krat

m+1(A,v, qm) := qm(A)−1Km+1(A,v), (5)

with qm ∈ Pm, a polynomial with roots Ξ. Every root in Ξ equal to ∞ reduces the degree of qm by
one.

The rational Krylov or rational Arnoldi algorithm listed in Algorithm 1 is a method for itera-
tively computing an orthonormal basis of Krat

m+1(A,v,Ξ).90

In line 3 of Algorithm 1, the zero is chosen as well as the vector tj which is known as the
continuation vector. This vector is chosen in such a way that it ensures that the subspace is
expanded. A common choice proposed by Ruhe [15] is:

tj =

{
ej if ξj = ξj−1

qj = Qjej otherwise
,
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Algorithm 1 rational Krylov algorithm [11, 12, 15] RK

Input: A ∈ CN×N , 0 6= v ∈ CN and poles Ξ = ((αi, βi))
m
j=1 = (ξi)

m
j=1

Output: Vm+1, Km and Lm
1: V1 := v/‖v‖2
2: for j = 1, 2, . . . ,m do
3: Choose %j = (γj , δj) and tj ∈ Cj \ {0}
4: Compute w := (αjA+ βjI)−1(γjA+ δjI)Vjtj
5: Orthogonalize w := w − Vj hj where hj = V ∗j w
6: Normalize hj+1,j := ‖w‖2
7: Store new basis vector V (:, j + 1) := w/hj+1,j

8: Update recurrence matrices
a: H(1 : j + 1, j) := hj = [hTj hj+1,j ]

T

b: T (1 : j, j) := tj
c: Dα(j, j) := αj , Dβ(j, j) := βj , Dγ(j, j) := γj , Dδ(j, j) := δj

9: end for
return Vm+1, Km := HmDα − TmDγ and Lm := −HmDβ + TDδ.

where Qj is computed from the QR factorization of αjLj−1+βjKj−1. In any case the continuation
vector should have a nonzero component in the direction of qj as otherwise the space is not
expanded [22].

Throughout Algorithm 1, the RK recurrence [12, 15, 21],

AVm+1Km = Vm+1 Lm, (6)

holds. This matrix decomposition is a generalization of the Arnoldi relation (2) and consists out of
matrices Vm+1 ∈ CN×(m+1) and a pair of upper Hessenberg matrices (Lm,Km) ∈ C(m+1)×m that95

we will refer to as the RK Hessenberg pair. The columns of Vm+1 are orthonormal by construction
of Algorithm 1 and they span the RK subspace Krat

m (A,v,Ξ). The ratio of the subdiagonal
elements of the upper Hessenberg matrices `i,i+1/ki,i+1 are equal to the poles ξi. The Hessenberg
matrix Hm containing the orthogonalization coefficients in Algorithm 1 is again unreduced but
the Hessenberg matrices (Lm,Km) are not guaranteed to each being unreduced separately. If100

ξi = 0 then `i+1,i = 0 and similarly if ξi = ∞ then ki+1,i = 0. Together, as a matrix pair, they
are unreduced, which means that for all subdiagonal entries |`i+1,i| + |ki+1,i| > 0. Both Lm and
Km are of maximal rank m [21, 22].

As Berljafa & Güttel [22] have shown, there is an essentially unique one-to-one correspondence
between an RK decomposition (6) and a RK subspace (5). We will call (Vm+1,Km, Lm) an RK105

triplet that corresponds to the RK subspace Krat
m+1(A,v1,Ξ = (`i+1,i/ki+1,i)).

Rational Krylov subspaces with all of their poles located at either 0 or ∞ form a special
instance called extended Krylov (EK) subspaces. An example is given by:

Krat
m+1(A,v,Ξext) = span{A−nv, . . . , A−1v, v, Av, . . . , Apv}, (7)

where n is equal to the number of elements in Ξext that are zero and p is the number of poles that
are at infinity. The dimension of the subspace is equal to m+1=n+p+1. It is clear that Arnoldi,
the polynomial Krylov method, is a specific case of the EK method with p=m.

The Hessenberg pair (Lm,Km) related to an EK subspace has the property that it is in110

condensed format. This means that exactly one of the subdiagonal elements in the matrix pair is
equal to zero at every row. So, either `i+1,i = 0 or ki+1,i = 0 for i ∈ {1, . . . ,m}. Consequently the
condensed QZ method of Vandebril & Watkins [25] can be applied to the EK Hessenberg pencil
(Lm,Km) to filter the EK method. We will show in Section 5 that this is a special case of the RK
filter.115

The last ingredient required to use both the RK and EK method for eigenvalue problems is a
way to extract eigenvalue estimates from the subspace Krat

m+1(A,v,Ξ) via the RK recurrence (6).
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Similar to Arnoldi’s method, we will use the Ritz pairs for this purpose. Let (ϑk, zk) satisfy,

K†mLm zk = ϑkzk, (8)

then (ϑk,xk = Vm+1Kmzk) is called a Ritz pair. The Ritz pairs satisfy the Galerkin condition:
Axk − ϑkxk ⊥ Km(A, qm(A)−1v) [29]: the residual is orthogonal to an m dimensional subspace
of the rational Krylov subspace of dimension m + 1. We call the matrix K†mLm the Galerkin
projection of the original problem A onto the rational Krylov subspace Km(A, qm(A)−1v). If the
last pole ξm is at infinity, the Ritz pairs can be computed equivalently by solving,

Lm zk = ϑkKm zk,

which avoids the computation of K†mLm. This small-scale generalized eigenvalue problem can be
solved, for example, with the rational QZ method [26].

The convergence of the Ritz pairs can be monitored inexpensively without invoking operations
with A. The residual vector rk of the Ritz pair (ϑk,xk) is given by,

rk = Axk − ϑkxk
= AVm+1Kmzk − ϑkVm+1Kmzk

= Vm+1Lmzk − Vm+1KmK
†
mLmzk

= Vm+1(I − P )Lmzk,

where P = KmK
†
m is the orthogonal projector on R(Km) and I − P is the orthogonal projector

on the nullspace of K∗m. This expression simplifies to rk = `m+1,mvm+1e
T
mzk if the last pole ξm

is chosen at infinity. This means that ‖rk‖ will be small if either |`m+1,m| is small, meaning that120

the RK subspace is nearly an invariant subspace, or if the last component of the eigenvector zk
becomes small.

The eigenvalues of interest can often be extracted from Krat
m+1(A,v,Ξ) for m � N and m

can often be much smaller than in the polynomial Krylov case if a good choice of poles Ξ is
made. However, in some cases, due to storage constraints or for limiting orthogonalization costs,125

it is preferable to restrain m to a certain maximal dimension. If not all eigenvalues of interest
have converged at this maximal m, even with a good choice of Ξ, it is necessary to restart the
iteration. We develop a method to carry out a restart of the RK iteration in the next two sections.
The method implicitly applies a polynomial filter to the subspace by acting on a QR-factorized
representation of the RK Hessenberg matrices and we show that the condensed QZ method of130

Vandebril & Watkins is a special case of this method.

3. Core transforming the rational Krylov method.

A core transformation Ci, acting on two consecutive rows i and i+1, is the embedding of a
nonsingular 2×2 matrix at rows and columns i and i+1 of the identity matrix. All core transforma-
tions considered in this paper are unitary and can, for example, be a Givens rotation matrix or a135

Householder reflector. Core transformations exhibit many properties that make them suitable for
stable and efficient computations. Since we restrict ourselves to the unitary case, the inner prod-
uct of two vectors is preserved upon multiplication with Ci. The inverse of a core transformation,
C∗i , is again a core transformation. Left multiplication with a core transformation Ci only affects
rows i and i+1 of a matrix, while right multiplication with the same core transformation only140

affects columns i and i+1. A commonly used graphical representation for core transformations is
by means of a double-sided arrow pointing to the rows or columns on which it acts. Consider the
following basic example:

×
×
×
×�� = ××

× .

In this example, the core transformation introduces a zero in position (2, 1) of the matrix, bringing145

it to upper triangular form.
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3.1. Factorizing the RK recurrence.

The QR factorization of an upper Hessenberg matrix H admits a representation with a de-
scending pattern of core transformations. An example is shown in Figure 1.

H =
×
×
×
×

××
×
×
×
×
×
×
×
×

×
×
×
×
×

=

��

��
��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

= C1C3C4C5 R = QR

Figure 1: QR factorization of a reducible Hessenberg matrix H represented as a descending sequence of core
transformations.

If the upper Hessenberg matrix H is unreduced, the pattern of core transformations becomes150

condensed. In this context, condensed means that there is exactly one core transformation acting
on every pair of consecutive rows i and i+1. The example shown in Figure 1 is reducible as there
is no core transformation C2 acting on rows 2 and 3.

We can generalize the notion of a condensed QR factorization to a matrix pair. As was
mentioned earlier, the EK Hessenberg pair (Lm,Km) is in condensed form. In terms of core155

transformations, this means that the unitary matrices from the QR factorizations Lm = QLRL
and Km = QK RK have the property that QLQK = Ci1 · · · Cim , with i1, . . . , im a permutation
of 1, . . . ,m, i.e. in the QR factorization of (Lm,Km) there is exactly one core transformation Ci
at every row i of the EK Hessenberg pair.

An example of a factorized EK Hessenberg pair with m=5 is presented in the top row of160

Figure 2. The total number of core transformations for the matrix pair is equal to m=5. If the
pole ξi is 0, the core transformation Ci is at the side of Km, for a pole at∞, the core transformation
appears at the side of Lm.

The factorized representation of a general RK Hessenberg pair (Lm,Km) with m=5 is shown
in the bottom row of Figure 2. In this case, both Hessenberg matrices admit a QR factorization165

with m core transformations in a descending sequence. This brings the total number of core
transformations for the RK Hessenberg pair up to 2m.

Ξrat = (ξ1, ξ2, ξ3, ξ4, ξ5) (L5,K5) =

��
��
��
��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

,

��
��
��
��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

Ξext = (0, 0,∞, 0,∞) (L5,K5) = ��

��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

,

��
��

��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

Figure 2: QR factorized representation of an EK Hessenberg pair with m = 5 (top row) and an RK Hessenberg
pair (bottom row).
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We denote the RK recurrence (6) with the RK Hessenberg pair in factorized format as,

AVm+1 U1 . . . Um︸ ︷︷ ︸
QK

RK = Vm+1 W1 . . .Wm︸ ︷︷ ︸
QL

RL, (9)

with Ui the core transformations related with Km and Wi those linked to Lm. In this represen-
tation the ith pole of the decomposition is equal to:

ξi =
(Wi)2,1(RL)i,i
(Ui)2,1(RK)i,i

, (10)

since the right-hand side is the ratio of the ith elements on the first subdiagonal of L and K. In
the extended Krylov setting either Ui or Wi is a diagonal matrix such that the element 2, 1 is zero
and Equation (10) results in zero or infinity.170

The QR factorization of the RK Hessenberg pair can be computed after the RK iteration of
Algorithm 1 has been computed up to full dimension m. It can also be computed and updated
iteratively during the course of Algorithm 1. This can be done as follows: assume that at step
j−1 of Algorithm 1 we have a factorized representation,

Kj−1 = U1 . . . Uj−1RK , and Lj−1 = W1 . . .Wj−1RL,

available. In step j of Algorithm 1, the factorized recurrence matrices need to be updated with
the new columns,

kj = αjhj − γj
[
tTj 0

]T
, and `j = −βjhj + δj

[
tTj 0

]T
,

in line 8. In order to do so, we first compute,

k̃j = U∗j−1 . . . U
∗
1 kj , and ˜̀

j = W ∗j−1 . . .W
∗
1 `j . (11)

The new core transformations Uj and Wj can now be computed from the last two entries of

respectively k̃j and ˜̀
j . Afterwards, the last entries are zeroed and the upper triangular matrices

RK and RL can be updated with new columns k̃j and ˜̀
j .

The update of the factorization in step j requires O(j) operations, the main computational
factor being the application of previous core transformations to compute k̃j and ˜̀

j . The to-175

tal additional computational complexity to factorize (Lm,Km) is O(m2) which is negligible in
comparison with the O(m2N) orthogonalization cost in Algorithm 1.

3.2. Three operations on core transformations.

We will make use of three types of elementary operations on core transformations to formulate
the methods for the implicit restart of the RK method. These operations are called the transfer,180

fusion and turnover operations. The transfer of a core transformation from left to right, or vice
versa, through an upper triangular matrix is shown in Figure 3.

��
××
×
×
×
×
×
×
×
×

=

××××
⊗⊗⊗
⊗⊗⊗
×

=

×⊗⊗×
⊗⊗×
⊗×
×

��

Figure 3: Transfer of a core transformation from the left of an upper triangular matrix to the right or vice versa.

Elements of the upper triangular matrix that are altered during the transfer from left to right
are indicated with⊗ in Figure 3. The core transformation on the left is different from the one on the
right but its index is not changed and the upper triangular shape is preserved. The computational185

complexity of a transfer operation is O(n), with n the dimension of the upper triangular matrix.
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��
��

��

××
×
×
×
×
×
×
×
×

=

××
×
×
×
×
×
×
×
×

��
��

��

Figure 4: The ordering of core transformations is preserved under the transfer operation.

Notice that a core transformation Ci on the right of an upper triangular acts on columns instead
of rows, as is indicated in the figure. If multiple core transformations are present in a given pattern
or shape, for example the descending pattern of a Hessenberg matrix, then the complete pattern of
transformations can be transferred through the upper triangular matrix. This operation preserves190

the mutual ordering of the core transformations, an example is shown in Figure 4.
Two core transformations that act consecutively on the same rows or columns can be multiplied

and the result is again a core transformation. This is called a fusion of core transformations and
is depicted as:

�↪→� �� = �� .

The turnover of a V-shaped pattern of 3 core transformations is given by is shown in Figure 5.
This operation flips a factorization of 3 core transformations that act on rows (i, i+1), (i+1, i+2),
(i, i+1) into a factorization acting on rows (i+1, i+2), (i, i+1), (i+1, i+2) or vice versa. A turnover
is always possible in the unitary case. This can be proven by considering two variants for factor-195

izing a unitary 3×3 matrix [30]. The computational complexity of both the fusion and turnover
operation is O(1).

��
��
��

= ��
��
��

Figure 5: Turnover of a V-shaped pattern of core transformations.

Finally, we remark that two core transformation Ci and Cj commute if |i − j| > 1. As a
consequence the mutual ordering in a pattern of core transformations is not necessarily unique.

3.3. Structure in the Galerkin projection.200

We can use the transfer operation to study the structure of the Galerkin projection K†mLm in
Equation (8) of the original large-scale problem onto the rational Krylov subspace.

It is well-known that the Galerkin projection on a rational Krylov subspace is of a particular
rank-structured from in the Hermitian case [31] and the unsymmetric case [32, 33]. We will prove
this same result but via a direct proof that exploits the matrix structure instead of using the205

theory of orthogonal rational functions [32, 33]. Up to our knowledge this is a novel approach for
this result.

Let us start with introducing the appropriate matrix structures. These are also illustrated in
Figure 6. We are already acquainted with the Hessenberg matrix shown in pane I: its QR factorized
representation admits a descending ordering of core transformations. This matrix structure is210

linked with the polynomial Krylov method as it is the structure of the Galerkin projection on the
polynomial Krylov subspace. Pane II shows an example of an extended Hessenberg matrix. This
is a relaxation of the Hessenberg matrix in the sense that the core transformations can admit any
ordering. This matrix structure is linked with the extended Krylov method as it is the structure
of the Galerkin projection on the extended Krylov subspace. We will show this in Lemma 3.1.215
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Finally, pane III shows an example of an extended Hessenberg plus diagonal matrix. Lemma 3.1
shows that this matrix structure is linked with the projection on a rational Krylov subspace. For
this reason, we use the alternative name rational Hessenberg matrix for this matrix structure.

××
×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��
��
��

I.

C1C2C3C4C5R

××
×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��

��
��
��

II.

C4C1C3C2C5R

××
×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��

��
��

+

d1
d2
d3
d4
d5
d6

III.

C5C4C2C3C1R + D

Figure 6: Examples of the representation of (I) Hessenberg, (II) extended Hessenberg and (III) rational Hessenberg
matrices.

Lemma 3.1. Given a rational Krylov triplet (Vm+1,Km, Lm) corresponding to the rational Krylov
subspace Krat

m+1(A,v1,Ξ = (ξ1, . . . , ξm)). Consider the vector d ∈ Cm with di = ξi for ξi 6= ∞,220

otherwise di can be any scalar. Then we have that K†mLm is a rational Hessenberg matrix QR+D
with:

- Q = Ck1 . . . Ckm−1
satisfying

[
Ci Ci+1 if ξi+1 =∞
Ci+1 Ci if ξi+1 6=∞

, i = 1, . . .m−2,

- D = diag(d).

Proof. Consider the matrix Gm = Lm −KmD, which is an (m+1)×m upper Hessenberg matrix225

as both Lm and KmD are upper Hessenberg of size (m+1)×m. The subdiagonal elements of Gm
are hi+1,i = `i+1,i − diiki+1,i for i ∈ {1, . . . ,m}. As dii = ξi = `i+1,i/ki+1,i if ki+1,i 6= 0, we have
that hi+1,i = 0 if the pole ξi is not at infinity. For poles at infinity, hi+1,i = `i+1,i 6= 0 since
there is no breakdown. The matrix Gm has thus a zero subdiagonal element whenever Km has a
nonzero subdiagonal element and vice versa. We have K†mLm = K†mGm + K†mKmD. As Km is230

full rank, K†mKm = Im and it remains thus to examine the QR factorization of K†mGm to prove
the Lemma.

We get,

K†mGm = R†KQ
∗
KQGRG =

[
R−1K 0

]
Q∗KQG

[
RG
0

]
,

where R−1K is well-defined since Km is of maximal rank. The unitary matrices can be represented
as a product of core transformations as,

QK = C̃∗i1 · · · C̃∗ik , and QG = C̃j1 · · · C̃j` ,

where k+` = m, i1 < i2 < . . . < ik, j1 < j2 < . . . < j` and {i1, . . . , ik} ∪ {j1, . . . , jl} equal to
{1, . . . ,m}. The Hermitian conjugates in QK are only introduced for convenience. The product
of both unitary matrices, Q̃ = Q∗KQG is equal to:

Q̃ = Q∗KQG = C̃ik . . . C̃i1C̃j1 . . . C̃jl = C̃k1 · · · C̃kn−1
.

We will prove next that the mutual ordering of C̃i and C̃i+1 in the factorization of Q̃ is imposed
by ξi+1 as specified in the formulation of the Lemma.

- If ξi+1 = ∞, then i+1 ∈ {j1, . . . , jl} as it was designed to create a zero in Gm. There are235

two possibilities, either C̃i appears in Q∗K or in QG. If it is in Q∗K it is clearly to the left, if
it is in QG, then j1 < . . . < jl ensures that is located to the left of Ci+1.
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- If ξi+1 6= ∞, then i+1 ∈ {i1, . . . , ik} and an analogous reasoning shows that C̃i must be
positioned right of C̃i+1.

There are two possibilities for the mth core transformation. If ξm 6= ∞ then the mth core
transformation in Q̃ is located on the left of core transformation m − 1 and we can write Q̃ =
CmQ̃1...m−1 with Q̃1...m−1 the unitary matrix formed by the first m−1 core transformations. This
gives:

K†mGm =
[
R−1K 0

]
CmQ̃1...m−1

[
RG
0

]
=
[
R̃ ⊗

]
Q̃1...m−1

[
RG
0

]
= Q1...m−1R.

In the second equality Cm is applied to columns m and m + 1 of R†K , this preserves the upper240

triangular structure in the left m ×m block. For the third equality Q1...m−1 is transferred from
the right of [R̃⊗] to the left. Since Q1...m−1 only affects the first m columns (rows), both the
upper triangularity in the left m×m block and the mutual ordering of the core transformations is
preserved.

Similarly, if ξm = ∞, the mth core transformation is located right from core transformation
m− 1 and we can write Q̃ = Q̃1...m−1Cm to get:

K†mGm =
[
R−1K 0

]
Q̃1...m−1Cm

[
RG
0

]
=
[
R−1K 0

]
Q̃1...m−1

[
R̃
⊗

]
= Q1...m−1R.

245

Let us further illustrate this structure with some simple examples.

Example 3.2. In the case of the projection on an extended Krylov subspace, the vector d can
be chosen as the zero vector according to Lemma 3.1 and we end up with a matrix in extended
Hessenberg format. For example, the Galerkin projection K†mLm on the extended Krylov subspace
of Figure 2 with Ξext = (0, 0,∞, 0,∞) is of the form:250

K†5L5 =

××
×
×
×
×
×
×
×
×

×
×
×
×
×

0
0
0
0
0

��
��

��
��

��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0[

R−1K 0
]

Q∗K QL
[
RL
0

]
=

��
��
��

��

××
×
×
×
×
×
×
×
×

×
×
×
×
×

Q̌1...4 Ř

.

The Galerkin projection K†mLm on the rational Krylov subspace of Figure 2 with Ξrat =
(ξ1, ξ2, ξ3, ξ4, ξ5), assuming all ξi 6=∞, is of the form:

K†5L5 = K†5G5 + diag(ξ1, . . . , ξ5) =

××
×
×
×
×
×
×
×
×

×
×
×
×
×

0
0
0
0
0

��
��

��
��

��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

+

ξ1
ξ2
ξ3
ξ4
ξ5[

R−1K 0
]

Q∗K QG
[
RG
0

]

=

��
��

��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

+

ξ1
ξ2
ξ3
ξ4
ξ5

.
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Since there are no infinite poles in this example the matrix G5, as used in the proof of255

Lemma 3.1, is an upper triangular matrix. As a consequence, all 5 core transformations are
located in an ascending pattern that forms Q∗K . In the second equality, the core transformation
acting on columns 5 and 6 is merged into the upper triangular matrix. This creates nonzero
elements in the last column, but the remaining core transformation can be transferred to the left
because the first columns are still in upper triangular form. The result is shown on the second260

row. It is clear that the product of the 5×6 and 6×5 upper triangular matrices result in a 5×5
matrix in upper triangular form.

4. Manipulating poles via core transformations.

In this section we revisit two operations that can be used to change poles of an RK Hessen-
berg pencil. These operations are also studied by Berljafa & Güttel [22]. We reformulate these265

operations in terms of the QR-factorized representation of the RK Hessenberg pencil.

4.1. Changing the first pole.

Assume we have an RK recurrence in factorized format as in Equation (9) with poles Ξ. If we

want to change ξ1 to another pole ξ̂1 = α̂1/β̂1 ∈ C̄, we can proceed as follows. First, compute the
vector,

x = γ

[
β̂1(W1)1,1(RL)1,1 − α̂1(U1)1,1(RK)1,1
β̂1(W1)2,1(RL)1,1 − α̂1(U1)2,1(RK)1,1

]
, (12)

where γ is any convenient scaling factor. Notice that x contains the nonzero elements of the first
column of (β̂1Lm− α̂1Km). Next, we compute a core transformation C1 that introduces a zero in
x,

C1x = αe1. (13)

If this core transformation C1 is fused with U1 to get Û1 and with W1 to get Ŵ1, then the first
pole in (L̂m, K̂m) is changed to ξ̂1, since:

(L̂m − ξ̂1K̂m)e1 = C1(β̂1Lm − α̂1Km)e1 =
1

γ
C1x =

α

γ
e1.

In other words, the first column of (L̂m − ξ̂1K̂m) is a scalar multiple of e1 which means that ξ̂1 is
its first pole. This procedure in shown in Figure 7. To maintain the RK recurrence (Equation (9)),
the orthonormal basis is updated as V̂m+1 = Vm+1C

∗
1 . This operation only involves the first two270

columns of Vm+1.

(L̂m, K̂m) =

↪→�� ��
��
��
��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

C1W1

Ŵ1

,

↪→�� ��
��
��
��
��

××
×
×
×
×
×
×
×
×

×
×
×
×
×
0

C1 U1

Û1

C1W1

Ŵ1

Figure 7: Procedure to change the first pole by a fusion with C1 computed with Equations (12) and (13).

4.2. Swapping poles.

Two adjacent poles ξi and ξi+1 in the RK Hessenberg pencil can be swapped by using standard
methods for reordering eigenvalues in the generalized Schur decomposition [22, 26]. Details and
solutions for the reordering problem can be found in K̊agström & Poromaa [34] and Van Dooren275

[35].
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In this section we show how the reordering technique can be combined with the representation
in terms of core transformations. The method thus starts with a factorized RK Hessenberg pencil
(Lm,Km) having poles Ξ = (ξ1, . . . , ξi−1, ξi, ξi+1, ξi+2, . . . , ξm). The end result is an equivalent
factorized RK Hessenberg pencil (L̂m, K̂m) with poles Ξ̂ = (ξ1, . . . , ξi−1, ξi+1, ξi, ξi+2, . . . , ξm).280

The swapping of poles ξi and ξi+1 is achieved by acting on rows i+1:i+2 and columns i:i+1
of (Lm,Km). The relevant part of the RK Hessenberg pencil is shown in Figure 8 both in its
factorized and full representation.

(Lm,Km) =

. . .
��
��

. . .

. . .
××
×
×
×
× . . .

Wi

Wi+1

,

. . .
��
��

. . .

. . .
××
×
×
×
× . . .

Ui
Ui+1

=

. . .
××
×
×
×
× . . .

×
× ,

. . .
××
×
×
×
× . . .

×
×

Figure 8: Rows and columns i up to i+2 of the RK Hessenberg pencil in factorized representation (left) and full
form (right). The 2×2 shaded part on the right contains the adjacent poles ξi and ξi+1.

The shaded area in Figure 8 is the 2×2 part that contains ξi and ξi+1. This part is in generalized
Schur form. The reordering techniques [34, 35] can thus be used to change the order of ξi and ξi+1.
These methods compute two core transformations Ci+1 acting on rows i+1:i+2 and Ci acting on
columns i:i+1 such that the poles in the shaded area are swapped. These core transformations
can be computed based on the factorized representation as,

Ci+1

[
(Wi)2,1(RL)i,i (Wi)2,1(RL)i,i+1 + (Wi)2,2(Wi+1)1,1(RL)i+1,i+1

(Wi+1)2,1(RL)i+1,i+1

]
Ci =

[
β1,1 ×

β2,2

]
,

Ci+1

[
(Ui)2,1(RK)i,i (Ui)2,1(RK)i,i+1 + (Ui)2,2(Ui+1)1,1(RK)i+1,i+1

(Ui+1)2,1(RK)i+1,i+1

]
Ci =

[
γ1,1 ×

γ2,2

]
,

(14)

with,

ξ̂i =
β1,1
γ1,1

=
(Wi+1)2,1(RL)i+1,i+1

(Ui+1)2,1(RK)i+1,i+1
= ξi+1, (15)

and,

ξ̂i+1 =
β2,2
γ2,2

=
(Wi)2,1(RL)i,i
(Ui)2,1(RK)i,i

= ξi. (16)

Here the matrices on the left-hand side of Equation (14) make up the shaded part in Figure 8
computed efficiently from the factorized representation.285

If we introduce Ci+1 on the left and Ci on the right in the factorized RK Hessenberg pencil,
we get the pattern shown in Figure 9. This figure displays the same part of the RK Hessenberg
pencil as Figure 8.

. . .

��
��
��

. . .

. . .
××
×
×
×
× . . .

��

Ci+1 Ci

,

. . .

��
��
��

. . .

. . .
××
×
×
×
× . . .

��

Ci+1 Ci

Figure 9: Introduction of Ci+1 and Ci from Equation 14 in the factorized RK Hessenberg pair.

Merging Ci on the right into the upper triangular matrices, creates a nonzero entry in position
(i+1, i) as shown in Figure 10. Further, a turnover can be performed on the V-shaped pattern of290

core transformations on the left side of the matrices. This is also shown in Figure 10.
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. . .
��
��
��•

. . .

. . .
⊗
⊗
⊗
⊗

. . .

×
×
× ,

. . .
��
��
��•

. . .

. . .
⊗
⊗
⊗
⊗

. . .

×
×
×

Figure 10: Merging of Ci on the right with the upper triangular matrices changes columns i and i+1 and creates
a nonzero element in position (i+1, i). The V-shaped pattern on core transformations on the right has undergone
a turnover operation.

As the configuration in both Figures 9 and 10 is mathematically equivalent with Equation (14),
it follows that the core transformations marked with a • will create a zero in position (i+1, i) and
restore the upper triangular form when applied to rows i and i+1 of the matrices. The end result
is shown in Figure 11, which is a factorized representation of the RK Hessenberg pair where poles295

ξi and ξi+1 have been swapped.

. . .
��
��

. . .

. . .
××
×
×
×
× . . .

,

. . .
��
��

. . .

. . .
××
×
×
×
× . . .

Figure 11: End result of the swap: the core transformations marked with • in Figure 10 restored the upper triangular
form of the matrices.

Finally, to maintain the RK recurrence (Equation (9)), the orthonormal basis is updated as
V̂m+1 = Vm+1C

∗
i+1.

5. An implicit QZ step for filtering the factorized rational Krylov method.

Algorithm 2 presents the implicit QZ method to apply a filter to the factorized RK recurrence300

of Equation (9). This is a reformulation of the method of Berljafa & Güttel [22, Section 4.3] in
terms of operations on core transformations.

The gist of Algorithm 2 is simple. Starting with a factorized RK triplet (Vm+1,Km, Lm) with
starting vector v and pole tuple Ξ = (ξ1, . . . , ξm), Algorithm 2 first changes the pole ξ1 to a shift
% in line 1. Next, this shift is swapped m−1 times until it arrives the last position. This is done in
lines 2− 4. At this stage the pole tuple is Ξ̂ = (ξ2, . . . , ξm, %). The span of V̂m+1 = Vm C

∗
1 . . . C

∗
m

is not changed, R(V̂m+1) = R(Vm+1), but the vectors are rearranged. The new starting vector is
given by:

v̂ = V̂m+1e1 = Vm+1 C
∗
1 . . . C

∗
me1 = Vm+1 C

∗
1e1 = γ̂Vm+1(Lm − %Km)e1. (17)

The third equality used the property that C∗i does not act on the first row and column if i > 1.
The fourth equality used x = (Lm − %Km)e1 = αC∗1e1, which is based on Equations (12) and
(13). The rational Krylov recurrence (Equation (6)) implies:

(A− %I)Vm+1(Lm − ξ1Km) = (A− ξ1I)Vm+1(Lm − %Km), (18)

as this essentially reduces to Equation (6) after expanding and canceling the terms on the left-hand
and right-hand side. Rearranging Equation (18) and combining with Equation (17) gives,

v̂ = γ̂Vm+1(Lm − %Km)e1 = γ̂(A− ξ1I)−1(A− %I)Vm+1(Lm − ξ1Km)e1

= γ̌(A− ξ1I)−1(A− %I)v.
(19)
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Algorithm 2 Single shift, implicit QZ step for RK RK QZ

Input: Factorized RK recurrence: Vm+1, Km = (U1, . . . , Um, RK), Lm = (W1, . . . ,Wm, RL), and
shift: % = µ/ν
Output: Filtered factorized RK recurrence: Vm, Km = (U1, . . . , Um−1, RK), Lm =
(W1, . . . ,Wm−1, RL)

1: Use the procedure of Section 4.1 to compute the initial core transformation C1 to change ξ1 to
%. Perform the fusion operation and update the RK basis matrix:

U1 ← C1 U1, W1 ← C1W1, Vm+1 ← Vm+1 C
∗
1 .

2: for i = 1, 2, . . . ,m− 1 do
3: Use the procedure of Section 4.2 to compute the left (Ci+1) and right (Ci) core transfor-

mations that swap pole ξi with ξi+1:
a: Update the RK basis matrix:

Vm+1 ← Vm+1 C
∗
i+1.

b: Merge the core transformation on the right, Ci, in the upper triangular matrices:

RK ← RK Ci, RL ← RL Ci.

c: Perform the turnovers:

[Ui, Ui+1, Či]← turnover(Ci+1, Ui, Ui+1),

[Wi, Wi+1, C̃i]← turnover(Ci+1, Wi, Wi+1).

d: Merge Či into RK to create a zero in position (i+1, i) and merge C̃i into RL to create a
zero in position (i+1, i).

4: end for
5: Reduce the order of the RK recurrence by discarding the last column of Vm+1, the last row

and column of RL and RK and the last core transformations Um and Wm.
return Vm, Km = (U1, . . . , Um−1, RK), Lm = (W1, . . . ,Wm−1, RL)
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From the uniqueness of a rational Krylov recurrence [22, Theorem 3.2], it follows that the result
of Algorithm 2 is a factorized RK triplet satisfying:

R(V̂m) = Krat
m (A, (A− ξ1I)−1(A− %I)v, (ξ2, . . . , ξm)).

An important strength of the formulation of the QZ step in terms of core transformation
is that deflation can be monitored easily and accurately in every step of the iteration. If for
any index i both core transformations Ui and Wi of the RK Hessenberg pair become equal to305

a diagonal matrix up to machine precision εmach during any of the steps of Algorithm 2 then Vi
spans an invariant subspace. Consequently the Ritz pairs of (Li,Ki) will be exact. More details on
deflations based on core transformations can be found in Mach & Vandebril [27]. A full overview
of the advantages of reformulating eigenvalue algorithms in terms of core transformations can be
found in the monograph [36].310

5.1. Filtering the extended Krylov method.

Algorithm 2 can be used as a filter for both the rational Krylov and the extended Krylov
method as the latter is a special instance of the former. However, as the EK Hessenberg pair is
in condensed form, there is additional structure that can be exploited to rephrase Algorithm 2
slightly.315

The method to introduce the shift as described in Section 4.1 and line 1 of Algorithm 2 remains
unchanged. After the shift has been introduced it appears as an additional core transformation
in the condensed EK Hessenberg pair that can be chased with the same technique as used in the
extended QZ method [25]. This chasing procedure can also be interpreted as a pole swap where
the first pole is equal to the shift to be chased and the second pole is either at 0 or ∞ depending320

on which side the next core transformation is located. The situation at step i is illustrated in
Figure 12: the ith pole is now equal to the shift that was introduced at the start and the (i+1)st
pole is either at 0 or ∞. In Figure 12 it is not specified which matrix represents Lm and Km as
the procedure in both cases is completely similar up to a reversal of their roles.

. . .
��

. . .

. . .
××
×
×
×
× . . . ,

. . .
��
��

. . .

. . .
××
×
×
×
× . . . =

. . .
××
×
×
×
× . . .

×
,

. . .
××
×
×
×
× . . .

×
×

Figure 12: Pole swapping in the extended Krylov setting: the ith pole is equal to the shift %, the (i+1)st pole is
either 0 or ∞ which means there is only 1 core transformation with index i+1.

The core transformation that is located on the left-hand side can be transferred through the325

left upper triangular matrix. This is shown in the left part of Figure 13. Here it can be removed
by right multiplication with its inverse. This effectively moves the Hermitian conjugate core
transformation to the right-hand side of the right upper triangular matrix. There it can again be
transferred to the left-hand side. This procedure is sketched in the right part of Figure 13.

. . .
�� ��

. . .

. . .
××
×
×
×
× . . . ,

. . .
��
��

. . .

. . .
××
×
×
×
× . . . ⇒

. . .

. . .

. . .
××
×
×
×
× . . . ,

. . .
��
��
�� ��

. . .

. . .
××
×
×
×
× . . .

Figure 13: Transfer of the core transformation on the left-hand side of the left matrix through the upper triangular
(left). Removal of this core transformation moves it to the matrix on the right, where it is transferred through the
upper triangular (right).
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Now the pattern on the right-hand side is ready for a turnover. This operation has been330

executed in the left side of Figure 14. After the turnover, the leftmost core transformation is
free as it can be moved to the matrix on the left-hand by left multiplication with its Hermitian
conjugate. This is shown in the right side of the Figure 14.

. . .

. . .

. . .
××
×
×
×
× . . . ,

. . .

��
��
��

. . .

. . .
××
×
×
×
× . . . ⇒

. . .

��
. . .

. . .
××
×
×
×
× . . . ,

. . .
��
��

. . .

. . .
××
×
×
×
× . . .

Figure 14: Turnover of the V-shaped pattern (left). Removal of the free core transformation on the right matrix
moves it to the left matrix (right).

This completes the swap in the case of a condensed matrix pair. As this entire procedure is
in fact an equivalence transformation applied to the shaded part indicated in the Figure 12, it335

preserves the eigenvalues, which are poles ξi and ξi+1 of the EK Hessenberg pair, and as such the
shift has been swapped one position down.

6. Numerical experiments.

A generic approach for a restarted rational Krylov iteration is listed in Algorithm 3. This
algorithm leaves open two major questions.340

The first question is an approach to select the poles during the expansion phase. The rational
Krylov method allows for plenty of freedom in this respect. If one has no a priori knowledge about
the problem at hand, the extended Krylov method can be a good alternative as it contains fewer
parameters. This is especially true during the first iterations, afterwards a motivated choice of
poles might be made based on information already available. If eigenvalues in a certain region of345

interest are searched after, the poles can be chosen in such a way that they form a rational filter
which emphasizes the eigenvalues inside the region of interest, see [37] for a detailed description
and a connection with contour integration techniques. In Example 6.3 we will use this approach
to determine eigenvalues in a contour. We will not go into further detail on the problem of pole
selection.350

A second issue is how to pick the shifts for the filter polynomial. Different practices have been
proposed in the literature. They all attempt to create a filter polynomial pf ∈ Pp that has the
property that |pf (z)| is large on Ωwanted and small on Ωunwanted, where Ωwanted and Ωunwanted

are disjoint compact sets in C. A first method is the use of exact shifts [17]. These are the p
Ritz values that are most distant from Ωwanted. Another option is to use shifts as the zeros of355

Chebyshev polynomials on an ellipse [3, 17]. The use of Leja shifts, proposed in [38, 39], is a third
possibility.

Example 6.1. In the first experiment, we use Algorithm 3 to determine the rightmost eigenvalues
of a small test problem using extended and rational Krylov subspaces and exact shifts for the filter.
The exact shifts are the leftmost Ritz values. We consider a matrix A ∈ R102×102 which is nonzero360

in the first 100 diagonal entries and in the last 2 × 2 block only. The diagonal entries are equal
to −100,−99, . . . ,−1 and the 2×2 block leads to the complex conjugate pair of eigenvalues ±25i.
This construction mimics the physical situation in the double-diffusive convection example [40, 41].
The spectrum of A is shown in Figure 15.

The rightmost eigenvalues of this matrix are ±25i. Assume we can only store a maximum of365

m=8 basis vectors in memory. For the restart phase we choose the parameter p=6. The starting
vector is [1 · · · 1]

T
and the iteration is repeated until the complex conjugate pair of Ritz values has

converged to an error smaller than 10−8.
Figure 16 shows the convergence of the desired Ritz values for 3 different options of poles Ξ.

The error |λ1,2 − ϑ|/|λ1,2| is shown in function of the dimension of the subspace. The left pane370
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Algorithm 3 Restarted rational Krylov algorithm RESTARTED RK

Input: A ∈ CN×N , 0 6= v ∈ CN , maximal subspace dimension m, restart length p, number of
desired Ritz pairs l (p+ l ≤ m)
Output: {(ϑk,xk)}lk=1

1: Start:
a: Select poles Ξm
b: [Vm+1,Km, Lm]← RK(A,v,Ξm) . Algorithm 1 in combination with Section 3.1.
c: Check convergence of l most desired Ritz pairs {(ϑk,xk)}lk=1

2: while not converged do
3: Select p shifts (%k)pk=1

4: for j = 1 . . . p do
5: [Vm−j+1,Km−j , Lm−j ]← RK QZ(Vm−j+2,Km−j+1, Lm−j+1, %j) . Algorithm 2.
6: end for
7: Select m− p new poles Ξm−p
8: Expand: [Vm+1,Km, Lm]← RK(A, V,K,L,Ξm−p) . Algorithm 1 in combination with

Section 3.1.
9: Check convergence of l most desired Ritz pairs {(ϑk,xk)}lk=1

10: end while

−100

−25i

25i

<{z}

={z}

.

Figure 15: Spectrum of the problem of size 102 in Example 6.1

shows the result for Ξ1 = (0, 0, . . .), meaning that only operations with A−1 are used and we have
an extended Krylov subspace. The restart is performed with the EK swap of Section 5.1. We
observe that the convergence for the complex conjugate pair is slow and 5 restarts are required to
meet the convergence criterion. The middle pane shows the convergence for Ξ2 = (∞,∞, . . .), a
polynomial Krylov subspace. The convergence is much faster in this case and only 3 restarts are375

required since the error is reduced by approximately 2 two orders of magnitude after every restart.
Considering the spectrum of A, this is what one would expect. The complex conjugate pair of

eigenvalues is situated at ±0.04i for A−1. They lie in the cluster of eigenvalues near zero and are
not well separated. This has a large impact on the convergence of the method. In the spectrum
of the original matrix A the complex conjugate pair of eigenvalues is well separated. Hence the380

more rapid convergence with Ξ2.
The right pane displays the result for a fully rational pole strategy. The initial subspace

is constructed using the RK pole tuple (−70.5,−60.5, . . . ,−10.5) with poles along the nega-
tive real axis. As this does not lead to significant convergence, the pole tuple is changed to
(22i,−22i, 16i,−16i, 10i,−10i) after the first restart. These poles along the imaginary axes speed385

up the convergence and only two restarts are required with this strategy.

Example 6.2. We study the benchmark problem from Elman et al. (2012)[42]. This problem
also stems from fluid dynamics and is a model for the flow in a unit-square cavity with the lid
moving from left to right. The Q2 — Q1 finite element discretization with IFISS from Elman
et al. (2014)[43] resulted in a generalized eigenvalue problem (A,B) ∈ R9540×9540. The Reynolds390

number Re is 7800 for the pencil we consider. The critical Reynolds number of this problem Rec
is slightly less than 7929 [42, 44]. The pencil we consider is thus stable.

Both matrices A and B of the matrix pencil (A,B) are nonsingular such that we can apply
an EK method for the generalized eigenvalue problem. The extended Krylov method for matrix
pairs is derived by replacing I with B in the Möbius transformation (4). This leads to operations395
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Figure 16: Convergence behavior for the restarted RK iteration for three different choices of Ξ. The convergence
of the initial subspace is shown with a solid line, convergence after restarting is indicated with a dashed line. Left:
extended, Middle: polynomial, Right: rational Krylov iteration.

with AB−1 for poles at ∞ and with BA−1 for poles at 0. The LU factorization of A takes 142 s
in Matlab and 27 s for B on an Intel Xeon CPU E5-2697. It is feasible to factorize both A and
B once, but repeating this every few iterations is costly. Hence we prefer the extended Krylov
method over the rational Krylov method.

Figure 17 shows the spectrum of (A,B). The left pane shows 343 eigenvalues in a region of400

the complex plane near the imaginary axis. The rightmost eigenvalues of (A,B) appear in the
complex conjugate pair λ1,2 = −0.005135± 2.698447i. They are encircled in Figure 17. The right
pane provides a closeup of the region near λ1,2.
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(a) 343 eigenvalues of (A,B)
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(b) 12 eigenvalues of (A,B)

Figure 17: The spectrum of the driven cavity problem. The encircled eigenvalues are the rightmost eigenvalues.

Table 1 lists the results for 3 different experiments with 3 different choices of Ξext. These are
cyclic pole tuples and the first column of Table 1 lists the first cycle in Ξext. The ratio of poles at405

0 decreases from the first to the third row as is indicated in the second column which shows the
ratio of operations with poles at 0 with the total number of operations. The third column gives
the requested tolerance for convergence, the fourth the number of restarts and the last column the
residual of the rightmost Ritz values.

The residual is in this case evaluated as,

‖Ax− λBx‖∞
‖A‖∞ + |λ|+ ‖B‖∞

.

In all three experiments, we create a subspace of dimension m=100, which is then reduced with410

p=50 exact (leftmost) shifts during the restart. Since this is a rather ‘difficult’ problem, the dimen-
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sion of the subspace is kept comparatively large. In order to retrieve the rightmost eigenvalues,
the convergence criterion is applied to the 12 rightmost Ritz values. If all 12 have a residual less
than the tolerance, the algorithm is halted. The tolerance is adjusted for each Ξext in such a way
that a good result is achieved within a reasonable number of restarts.415

The results indicate that retrieving the rightmost eigenvalues of this problem up to good
accuracy is feasible with a small number of restarts. The first two choices of Ξext give a significantly
faster convergence than the third. When the tolerance in the third experiment is lowered to 10−8,
the method fails to converge in a reasonable number of restarts. We conclude that for this problem
it is beneficial to include operations with pole at 0.420

The ARPACK [45] implementation of implicitly restarted Arnoldi, which is available in Mat-
lab as the command eigs, did not retrieve the rightmost eigenvalues. This experiment demon-
strates that the extended Krylov method can sometimes be a suitable choice for finding a few
eigenvalues of a matrix if two conditions are satisfied. First, the convergence of the polynomial
Krylov method is too slow to find the eigenvalues of interest within a reasonable number of restarts425

and with subspaces of small enough dimensions. Second, the computational cost of computing
an LU factorization of the matrix is too large to repeat every few iterations, which excludes the
rational Krylov method as a viable option, but it is small enough to do once. This second con-
dition leaves both the extended Krylov method and shift-and-invert Arnoldi as suitable options
since they both require only one matrix factorization.430

Ξext
#BA−1op.

all op. tolerance restarts residual norm

∞ 0 0 0 0 · · · 4/5 3 · 10−10 12 9.3 · 10−12

∞ 0 0 0 · · · 3/4 8 · 10−10 9 2.7 · 10−11

∞ 0 0 · · · 2/3 1.5 · 10−8 6 1.4 · 10−8

Table 1: Summary of the results of Algorithm 3 on the cavity flow model with m=100, p=50 and v = [1 · · · 1]T

with three different options of Ξext. The convergence is checked for the 12 rightmost Ritz values. The first column
specifies the first cycle of Ξext, the second column lists the fraction of poles at 0 in Ξext, the third column gives
the requested tolerance, the fourth column the number of restarts and the last column the residual norm upon
convergence.

Example 6.3. In this last example, we make a direct comparison between the results obtained
with Algorithm 3 and the explicit QZ step of De Samblanx et al. which is listed in Algorithm 4.
In line 2 of Algorithm 4 an orthogonal matrix Z ∈ Cm×m−1 is computed for which the vector
(νL∗m + µK∗m)q is in the nullspace of Z∗. This condition is not restrictive and does not define Z
uniquely. Two choices for Z are used in our experiment: Z1 as computed by Algorithm 6.1 of [21]435

and Z2 computed from the full QR factorization
[
z Z2

]
[ α0 ] = (νL∗m + µK∗m)q.

Algorithm 4 Single shift, explicit QZ step for RK [21]

Input: Vm+1, Km, Lm, % = (µ, ν)
Output: V̌m, Ǩm−1, Ľm−1

1: Compute full QR factorization
[
Q̌ q

] [R
0

]
:= µLm + νKm

2: Compute Z satisfying q∗(ν̄Lm + µ̄Km)Z = 0
3: Ǩm−1 := Q̌∗KmZ

4: Ľm−1 := Q̌∗LmZ

5: V̌m = Vm+1Q̌

The matrix we consider is PDE900 from the MatrixMarket collection. This is a real matrix
of size 900×900. We are interested in determining the 9 eigenvalues of this matrix inside the
elliptical contour Γ, shown in Figure 18(a). For this purpose, the contour is discretized with
N = 110 points and both the poles Ξ and filter shifts % are located at these discretization nodes.440
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For more details on this choice of rational filter and connections with contour integration methods,
see Van Beeumen, Meerbergen & Michiels (2017) [37].
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(a) Spectrum and continuous contour.
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(b) Spectrum, discretized contour and Ritz values
with implicit QZ

Figure 18: Problem setting and results with the implicit QZ method.

Given that all poles are on a contour in C, we are dealing with a proper rational Krylov
iteration. The tolerance is set to 10−7. After 3 outer iterations of adding N poles and applying
N filter shifts with the implicit QZ step, the problem can be deflated. The iteration found an445

invariant subspace containing the Ritz values of interest which are shown in Figure 18(b).
With the explicit QZ step of Algorithm 4, deflation does not occur or goes unnoticed and after

the maximum of 6 outer iterations the Ritz values obtained with the choice of Z1 are shown in
Figure 19(a) and in Figure 19(b) for Z2. Clearly, the method did not converge and the explicit
QZ step distorts the information in the rational Krylov subspace.450

This example demonstrates that the implicit QZ step is superior to the explicit step. Not
only is it computationally more efficient, it behaves more stable and allows for accurate deflation
monitoring.

7. Conclusion.

This paper presented an implicit QZ step, formulated in terms of operations on core transforma-455

tions, that is useful for filtering and restarting the rational Krylov iteration. It is mathematically
equivalent with the method of Berljafa & Güttel [22] but has some advantages. First, the represen-
tation with core transformations allows for accurate deflation monitoring throughout the restart
phase. Second, the representation with core transformations allowed us to formulate an alternative
proof that the Galerkin projection on a rational Krylov subspace has the structure of a rational460

Hessenberg matrix in Lemma 3.1. Third, it is in essence a reformulation of the rational QZ method
[26] in terms of core transformations. In Section 5.1 we showed that this is a generalization of the
extended QZ method [25] and reinterpreted the core chasing step as a pole swap.

In the numerical experiments, we tested the method on three different problems and demon-
strated the validity of the implicit approach both for the extended and rational Krylov methods.465

We showed how extended Krylov can, in particular cases, be an interesting method for the com-
putation of the rightmost eigenvalues. We compared our method with ARPACK and with the
implicit restart method proposed by De Samblanx et al. [21], and showed that the new method
can outperform these in some scenarios.
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(a) Spectrum, discretized contour and Ritz values
with explicit QZ with option Z1.
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Figure 19: Results with the explicit QZ method.
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