

Pole swapping methods for the eigenvalue problem

Rational QR algorithms

Daan Camps

Berkeley Lab Seminar

KU Leuven - University of Leuven - Department of Computer Science - NUMA Section

Collaborators:

- Raf Vandebril
- Karl Meerbergen
- Paul Van Dooren
- Thomas Mach
- David Watkins
- Nicola Mastronardi

Overview

Introduction

- Generalized eigenvalue problems
- Bulge chasing
- Pole swapping
 - Rational QZ
 - Computing the swap
 - Rational Krylov
- Rational accelerated subspace iteration Blocked pole swapping Rational QR Rational LR and TTT Conclusion

Introduction

• Let $A, B \in \mathbb{F}^{n \times n}$ determine a matrix pair (A, B) or matrix pencil $A - \lambda B$.

Generalized eigenvalue problems

- Let $A, B \in \mathbb{F}^{n \times n}$ determine a matrix pair (A, B) or matrix pencil $A \lambda B$.
- Regular pencils: $det(A \lambda B) \neq 0$.

Generalized eigenvalue problems

- Let $A, B \in \mathbb{F}^{n \times n}$ determine a matrix pair (A, B) or matrix pencil $A \lambda B$.
- Regular pencils: $det(A \lambda B) \neq 0$.
- Generalized eigenvalue problem:

 $A\mathbf{x} = \lambda B\mathbf{x}, \quad \lambda \in \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\},$ $p(\lambda) = \det(A - \lambda B) = 0.$

Generalized eigenvalue problems

- Let $A, B \in \mathbb{F}^{n \times n}$ determine a matrix pair (A, B) or matrix pencil $A \lambda B$.
- Regular pencils: $det(A \lambda B) \neq 0$.
- Generalized eigenvalue problem:

 $A\mathbf{x} = \lambda B\mathbf{x}, \quad \lambda \in \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\},$ $p(\lambda) = \det(A - \lambda B) = 0.$

• Regularity: *n* eigenvalues (counting multiplicities) including infinite eigenvalues (singular *B*)

Generalized eigenvalue problems: generalized (real) Schur decomposition

• For $A - \lambda B$ with $A, B \in \mathbb{F}^{n \times n}$ there exists unitary Q and Z such that

 $Q^*(A - \lambda B)Z = S - \lambda T$

with $S - \lambda T$ upper triangular and $\Lambda(A, B) = \{s_{11}/t_{11}, s_{22}/t_{22}, \ldots\}$. Generalized Schur decomposition of $A - \lambda B$.

Generalized eigenvalue problems: generalized (real) Schur decomposition

• For $A - \lambda B$ with $A, B \in \mathbb{F}^{n \times n}$ there exists unitary Q and Z such that

 $Q^*(A - \lambda B)Z = S - \lambda T$

with $S - \lambda T$ upper triangular and $\Lambda(A, B) = \{s_{11}/t_{11}, s_{22}/t_{22}, \ldots\}$. Generalized Schur decomposition of $A - \lambda B$.

• For $A - \lambda B$ with $A, B \in \mathbb{R}^{n \times n}$ there exists orthonormal Q and Z such that

$$Q^{T}(A,B)Z = (S,T) = \begin{pmatrix} S_{11} & S_{12} & \dots & S_{1m} \\ 0 & S_{22} & \ddots & S_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & S_{mm} \end{pmatrix}, \begin{bmatrix} T_{11} & T_{12} & \dots & T_{1m} \\ 0 & T_{22} & \ddots & T_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & T_{mm} \end{bmatrix} \end{pmatrix},$$

where (S_{ii}, T_{ii}) , i = 1, ..., m of dimension 1×1 or 2×2 .

Generalized real Schur decomposition of $A - \lambda B$.

• Independently proposed by (Francis, 1961-62) and (Kublanovskaya, 1961)

- Independently proposed by (Francis, 1961-62) and (Kublanovskaya, 1961)
- Still the default algorithm in many numerical software packages: LAPACK, Matlab etc.

- Independently proposed by (Francis, 1961-62) and (Kublanovskaya, 1961)
- Still the default algorithm in many numerical software packages: LAPACK, Matlab etc.
- It is a *bulge chasing* algorithm for $A\mathbf{x} = \lambda \mathbf{x}$ with $O(n^3)$ complexity

- Independently proposed by (Francis, 1961-62) and (Kublanovskaya, 1961)
- Still the default algorithm in many numerical software packages: LAPACK, Matlab etc.
- It is a *bulge chasing* algorithm for $A\mathbf{x} = \lambda \mathbf{x}$ with $O(n^3)$ complexity
- Listed in *"Top Ten Algorithms of the Century."* by Computing in Science and Engineering (2000)

- 1. Metropolis algorithm for Monte Carlo
- 2. Simplex method for linear programming
- 3. Krylov subspace iteration (CG)
- Decomposition approach to matrix computation (LU, Singular value)
- 5. The Fortran compiler
- QR algorithm for eigenvalues
- 7. Quick sort
- Fast Fourier transform
- Integer relation detection
- 10. Fast multipole

• Proposed by (Moler-Stewart, 1973).

- Proposed by (Moler-Stewart, 1973).
- An extension of the QR method to compute the generalized Schur decomposition of $A\mathbf{x} = \lambda B\mathbf{x}$.

- Proposed by (Moler-Stewart, 1973).
- An extension of the QR method to compute the generalized Schur decomposition of Ax = λBx.
- Also a bulge chasing algorithm that consists of two phases:
 - 1. Initial (direct) reduction to equivalent Hessenberg, upper triangular form

 $H - \lambda R = Q^* (A - \lambda B) Z$

- Proposed by (Moler-Stewart, 1973).
- An extension of the QR method to compute the generalized Schur decomposition of Ax = λBx.
- Also a bulge chasing algorithm that consists of two phases:
 - 1. Initial (direct) reduction to equivalent Hessenberg, upper triangular form

 $H - \lambda R = Q^* (A - \lambda B) Z$

2. Iterative bulge chasing phase to compute (real) generalized Schur decomposition

$$S - \lambda T = Q^* (A - \lambda B) Z$$

 $A - \lambda B$

 $oldsymbol{q}_1 = (AB^{-1} - arrho I)oldsymbol{e}_1$

 $Q_1^*(A - \lambda B)$

 $Q_1^*(A-\lambda B)Z_1$

 $Q_2^*Q_1^*(A-\lambda B)Z_1$

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $q_1 = p(AB^{-1})e_1$ and thus by *shifts*.

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $\boldsymbol{q}_1 = p(AB^{-1})\boldsymbol{e}_1$ and thus by *shifts*.

• Nested subspace iteration with a change of basis accelerated by polynomials (shifts) (Elsner-Watkins, 1991; Watkins, 1993)

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $q_1 = p(AB^{-1})e_1$ and thus by *shifts*.

• Nested subspace iteration with a change of basis accelerated by polynomials (shifts) (Elsner-Watkins, 1991; Watkins, 1993)

 \rightarrow These results are based on a connection with Krylov subspaces.
Pole swapping

Rational QZ

Hessenberg pencils

- - В

•

Rational QZ

Hessenberg pencils

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times$ $\times \times \times$ XX •

- - \times × ×

XX

R

Rational QZ

Hessenberg pencils

Introducing a shift

 \times \times \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times$ $(\mathbf{d}) \times \times \times \times \times$ $(e) \times \times \times$ $(f) \times \times$ Ø X

Introducing a shift

Introducing a shift

 \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times \times$ $(\mathbf{d}) \times \times \times \times \times$ $(e) \times \times \times$ $(f) \times \times$ **g**) ×

Introducing a shift

- $A, B \in \mathbb{C}^{n \times n}$ Hessenberg with poles $\Xi = (\xi_1, \dots, \xi_{n-1})$
- Change ξ_1 to another pole $\hat{\xi}_1$:
 - $\mathbf{x} = \gamma (\mathbf{A} \hat{\xi}_1 B) (\mathbf{A} \xi_1 B)^{-1} \mathbf{e}_1 = \hat{\gamma} (\mathbf{A} \hat{\xi}_1 B) \mathbf{e}_1,$
 - $Q_1^* \boldsymbol{x} = \alpha \boldsymbol{e}_1$,
- $\hat{A} \lambda \hat{B} = Q_1^*(A \lambda B)$

$$(\hat{A} - \hat{\xi}_1 \hat{B}) \boldsymbol{e}_1 = Q_1^* (A - \hat{\xi}_1 B) \boldsymbol{e}_1 = \tilde{\gamma} Q_1^* \boldsymbol{x} = \alpha \, \tilde{\gamma} \boldsymbol{e}_1$$

• One exception: $(A - \xi_1 B) \boldsymbol{e}_1 = \boldsymbol{0}$

Swapping poles

Swapping poles

* * * * * * * * $\overline{\mathbf{c}} \times \times \times \times \times$ $(d) \times \times \times \times \times$ $e \times \times \times$ $(f) \times \times$ g) X

Swapping poles

 $(g) \times$

Swapping poles

Swapping poles

 $\times \times \otimes \otimes \times \times \times \times$ $(b) \times \otimes \otimes \times \times \times \times \times$ $(c) \otimes \otimes \times \times \times \times \times$ $(\mathbf{d}) \otimes \otimes \otimes \otimes \otimes \otimes$ $\Theta \otimes \otimes \otimes \otimes$ $e \times \times \times$ $(f) \times \times$ $(g) \times$

Swapping poles

Swapping poles

Swapping poles

 \times \times \times \times \times \otimes \otimes \times $(\mathbf{b}) \times \times \times \times \otimes \otimes \times$ $(c) \times \times \times \otimes \otimes \times$ $(\mathbf{d}) \times \times \otimes \otimes \times$ $(e) \times \otimes \otimes \times$ $(f) \otimes \otimes \times$ \otimes $(g) \times$

Introducing a pole

Introducing a pole

 $\times \times \times \times \times \times \times \otimes \otimes$ $(2) \times \times \times \times \times \times \otimes \otimes$ $(3) \times \times \times \times \otimes \otimes$ $(4) \times \times \times \otimes \otimes$ $(5) \times \times \otimes \otimes$ $(6) \times \otimes \otimes$ $(7) \otimes \otimes$

Classical QZ as a special case

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ XX

 \times \times \times \times \times \times \times \times

×

В

,

Classical QZ as a special case

 \times \times \times \times \times \times \times \times $\bigoplus \times \times \times \times \times \times \times$ \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ XX ,

В

Classical QZ as a special case

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\oplus \times \times \times \times \times \times$ \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ × × ,

 \times

B

Computing the swap: problem statement

We want to compute:

$$Q^*(A-\lambda B)Z = Q^*\left(\begin{bmatrix}\alpha_1 & a\\ & \alpha_2\end{bmatrix} - \lambda \begin{bmatrix}\beta_1 & b\\ & \beta_2\end{bmatrix}\right)Z = \begin{bmatrix}\hat{\alpha}_1 & \hat{a}\\ & \hat{\alpha}_2\end{bmatrix} - \lambda \begin{bmatrix}\hat{\beta}_1 & \hat{b}\\ & \hat{\beta}_2\end{bmatrix} = \hat{A} - \lambda \hat{B},$$

with:

•
$$\alpha_1/\beta_1 = \hat{\alpha}_2/\hat{\beta}_2 = \xi_1$$

•
$$\alpha_2/\beta_2 = \hat{\alpha}_1/\hat{\beta}_1 = \xi_2$$

Classical problem in NLA:

- Van Dooren (1981)
- Kågström (1993)
- C.-Mach-Vandebril-Watkins (2019)

Computing the swap: problem statement

We need to construct $Z = [\mathbf{z}_1 \ \mathbf{z}_2]$, $Q = [\mathbf{q}_1 \ \mathbf{q}_2]$ in such a way that:

• q_1 , z_1 are a *deflating pair* for $A - \lambda B$ corresponding to the eigenvalue ξ_2 , i.e.

$$(A - \lambda B)\mathbf{z}_1 = \gamma_1 \mathbf{q}_1 (\alpha_2 - \lambda \beta_2),$$

• similarly, q_2 , z_2 are a deflating pair for ξ_1 ,

$$(A - \lambda B)\mathbf{z}_2 = \gamma_2 \mathbf{q}_2(\alpha_1 - \lambda \beta_1).$$

It then follows from the orthogonality of Q, Z that

$$\boldsymbol{q}_2^* A \boldsymbol{z}_1 = \boldsymbol{q}_2^* B \boldsymbol{z}_1 = \boldsymbol{0},$$

and thus the swapping is achieved.

Two options:

• 1. First Z, then Q: $H_1 = \beta_2 A - \alpha_2 B = \begin{bmatrix} \times & \times \\ 0 & 0 \end{bmatrix}$ $H_1 Z = (\beta_2 A - \alpha_2 B) Z = \begin{bmatrix} 0 & \times \\ 0 & 0 \end{bmatrix}$

 \Rightarrow z_1 is a right eigenvector of $A - \lambda B$ associated with ξ_2 $\Rightarrow Az_1$ and Bz_1 are parallel, rotation Q can simultaneously introduce a zero in position (2, 1) of both AZ and BZ

Two options:

• 2. First Q, then Z: $H_2 = \beta_1 A - \alpha_1 B = \begin{bmatrix} 0 & \times \\ 0 & \times \end{bmatrix}$ $Q^* H_2 = Q^* (\beta_1 A - \alpha_1 B) = \begin{bmatrix} 0 & \times \\ 0 & 0 \end{bmatrix}$

 $\Rightarrow \mathbf{q}_2^*$ is a left eigenvector of $A - \lambda B$ associated with ξ_1 $\Rightarrow \mathbf{q}_2^*A$ and \mathbf{q}_2^*B are parallel, rotation Z can simultaneously introduce a zero in position (2, 1) of Q^*A and Q^*B

Computing the swap: finite precision

Theorem C.-Mach-Vandebril-Watkins (2019)

Let

$$A - \lambda B = \begin{bmatrix} \alpha_1 & \mathbf{a} \\ & \alpha_2 \end{bmatrix} - \lambda \begin{bmatrix} \beta_1 & \mathbf{b} \\ & \beta_2 \end{bmatrix},$$

with $\alpha_1/\beta_1 = \xi_1$, and $\alpha_2/\beta_2 = \xi_2$. Furthermore, assume $|\xi_1| \ge |\xi_2|$. If the swapping is computed by first deriving \tilde{Z} , as described in method 1 above, and afterwards computing \tilde{Q} such that $Q^*(BZe_1) = \gamma e_1$, then we have that the computed transformations satisfy:

$$ilde{Q}^*(A + E_A, B + E_B) ilde{Z} = \left(\begin{bmatrix} ilde{lpha}_1 & ilde{a} \\ & ilde{lpha}_2 \end{bmatrix}, \begin{bmatrix} ilde{eta}_1 & ilde{b} \\ & ilde{eta}_2 \end{bmatrix}
ight)$$

with $||E_A||_2 \le c\epsilon_m ||A||_2$, $||E_B||_2 \le c\epsilon_m ||B||_2$, c a small constant.

Table 1: Numerical methods to compute a backward stable pole swap.

$ \xi_1 \ge \xi_2 $	$ \xi_1 < \xi_2 $
1.A) First Z , then Q from	1.B) First Z , then Q from
$Q^*(BZoldsymbol{e}_1)=\gammaoldsymbol{e}_1$	$Q^*(\mathcal{A}Zoldsymbol{e}_1)=\gammaoldsymbol{e}_1$
2.A) First Q , then Z from	2.B) First Q , then Z from
$(oldsymbol{e}_2^*Q^*A)Z=\gammaoldsymbol{e}_2^*$	$(oldsymbol{e}_2^*Q^*B)Z=\gammaoldsymbol{e}_2^*$

Table 2: Distribution of errors $|\hat{a}_{21}|/||A||$ and $|\hat{b}_{21}|/||B||$ for our method, Van Dooren's method, and the Sylvester method.

$ \hat{x}_{21} / \ X\ $		$\left[0,10^{-16}\right]$	$\left(10^{-16},10^{-15}\right]$	$\left(10^{-15},10^{-10}\right]$	$\left(10^{-10}, 10^{-5}\right]$	$\left(10^{-5},10^0\right]$
Our method	A	99.71%	0.29%	0%	0%	0%
	B	99.85%	0.15%	0%	0%	0%
Van Dooren	A	98.19%	0.55%	0.93%	0.27%	0.06%
	B	98.19%	0.55%	0.93%	0.27%	0.06%
Sylvester	A	93.34%	5.88%	0.57%	0.17%	0.04%
	B	93.34%	5.88%	0.57%	0.17%	0.04%

Rational Krylov Matrices and Subspaces

• Krylov subspace

$$\mathcal{K}_{m+1}(A, \boldsymbol{v}) := \mathcal{R}(\boldsymbol{v}, A\boldsymbol{v}, \dots, A^m \boldsymbol{v})$$

• rational Krylov subspace

$$egin{aligned} \mathcal{K}_{m+1}^{\mathsf{rat}}(A,oldsymbol{v},\Xi) &:= q(A)^{-1}\mathcal{K}_{m+1}(A,oldsymbol{v}) \ &\equiv = (\xi_1,\ldots,\xi_m) \subset ar{\mathbb{C}}\setminus\Lambda, \qquad q(z) = \prod_{\xi_i
eq \infty} (z-\xi_i) \end{aligned}$$

• rational Krylov matrix

$$K_{m+1}^{\mathrm{rat}}(A, \boldsymbol{v}, \Xi) = q(A)^{-1} \left[\boldsymbol{v}, A \boldsymbol{v}, \ldots, A^{m} \boldsymbol{v} \right]$$

Definition: Properness.

The Hessenberg pair (A, B) is called *proper* if:

Theorem (C.-Meerbergen-Vandebril, 2019a)

If (A, B) is a proper Hessenberg pair with poles $(\xi_1, \ldots, \xi_{n-1})$ distinct from the eigenvalues. Then for $i = 1, \ldots, n$:

$$\mathcal{K}_i^{\mathsf{rat}}(AB^{-1}, \boldsymbol{e}_1, (\xi_1, \ldots, \xi_{i-1})) = \mathcal{E}_i := \mathcal{R}(\boldsymbol{e}_1, \ldots, \boldsymbol{e}_i),$$

while for i = 1, ..., n - 1:

 $\mathcal{K}_i^{\mathsf{rat}}(B^{-1}A, \boldsymbol{e}_1, (\xi_2, \ldots, \xi_i)) = \mathcal{E}_i.$
Corollary (C.-Meerbergen-Vandebril, 2019a)

If (A, B) is a proper Hessenberg pair with poles $(\xi_1, \ldots, \xi_{n-1})$ distinct from the eigenvalues. Then for $i = 1, \ldots, n$:

$$K_i^{\rm rat}(AB^{-1}, \boldsymbol{e}_1, (\xi_1, \ldots, \xi_{i-1})) = R_i,$$

while for i = 1, ..., n - 1:

$$\mathcal{K}_i^{\mathsf{rat}}(B^{-1}A, \boldsymbol{e}_1, (\xi_2, \ldots, \xi_i)) = \hat{R}_i.$$

Implicit Q Theorem. (C.-Meerbergen-Vandebril, 2019a)

Given a regular matrix pair (A, B). The matrices Q and Z that transform it to proper Hessenberg form,

$$(\hat{A},\hat{B})=Q^*(A,B) Z,$$

are determined essentially unique if Qe_1 and the (order of the) poles are fixed.

Theoretical results

Rational accelerated subspace iteration. (C.-Meerbergen-Vandebril, 2019a) A rational QZ step with shift $\varrho \notin \{\Lambda, \Xi\}$ on a proper Hessenberg pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n , all distinct from Λ , performs nested subspace iteration for $i = 1, \ldots, n-1$ accelerated by

$$Q\mathcal{E}_i = \mathcal{R}(\boldsymbol{q}_1, \dots, \boldsymbol{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$Z\mathcal{E}_i = \mathcal{R}(\boldsymbol{z}_1, \dots, \boldsymbol{z}_i) = (A - \xi_{i+1}B)^{-1}(A - \varrho B)\mathcal{E}_i.$$

followed by a change of basis.

 \rightarrow Subspace iteration with rational filter \rightarrow More modular (single swap) convergence theory: (C.-Mach-Vandebril-Watkins, 2019).

Exactness result (C., 2019)

Let (A, B) be a proper Hessenberg pencil with poles Ξ . Furthermore, let ρ be an eigenvalue of (A, B) which is distinct from Ξ . A rational QZ step, $Q^*(A, B)Z$, with shift ρ leads to a deflation in the last rows of $Q^*(A, B)Z$.

Pole swapping =

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $m{q}_1=q(AB^{-1})m{e}_1$ and poles in pencil

- Nested subspace iteration with a change of basis accelerated by rational functions (shifts and poles)
- \rightarrow These results are based on a connection with rational Krylov subspaces

Blocked pole swapping

Motivation: make the rational QZ method competitive with state-of-the-art.

- Extension of the rational QZ method from Hessenberg to block Hessenberg pencils
- Shifts and poles of larger multiplicity
- Real-valued generalized eigenproblems in real arithmetic
- Swapping 2×2 blocks: Iterative refinement via Newton steps
- Blocked operations for improved cache usage
- Aggressive early deflation

Multishift, multipole swapping methods

Block Hessenberg pencils:

Pole pencil

Swapping 2×2 blocks

- with 1×1 : similar to 1 with 1, backward stable (in practice, no error analysis yet)
- with 2×2 : (Kågström, 1993)

$$Q^{T}\left(\begin{bmatrix}A_{11} & A_{12}\\ & A_{22}\end{bmatrix}, \begin{bmatrix}B_{11} & B_{12}\\ & B_{22}\end{bmatrix}\right)Z = \left(\begin{bmatrix}\hat{A}_{11} & \hat{A}_{12}\\ & \hat{A}_{22}\end{bmatrix}, \begin{bmatrix}\hat{B}_{11} & \hat{B}_{12}\\ & \hat{B}_{22}\end{bmatrix}\right), \quad (1)$$

with blocks (A_{11}, B_{11}) , $(\hat{A}_{22}, \hat{B}_{22})$ of dimension n_1 and blocks (A_{22}, B_{22}) , $(\hat{A}_{11}, \hat{B}_{11})$ of dimension n_2 . Furthermore, we require:

$$\left(\begin{array}{c} \Lambda(A_{11}, B_{11}) = \Lambda(\hat{A}_{22}, \hat{B}_{22}) = \Xi^{1} \\ \Lambda(A_{22}, B_{22}) = \Lambda(\hat{A}_{11}, \hat{B}_{11}) = \Xi^{2} \end{array} \right),$$

and we assume that Ξ^1 and Ξ^2 are disjoint sets.

Lemma: Kågström (1993)

Let the pencil (A, B) be as in (1). Let $X, Y \in \mathbb{R}^{n_1 \times n_2}$ be the solution of:

$$\begin{cases} A_{11}Y - XA_{22} = A_{12}, \\ B_{11}Y - XB_{22} = B_{12}. \end{cases}$$
(2)

Then a pair of right deflating subspaces for (A_{22}, B_{22}) are spanned by the columns of:

$$\begin{bmatrix} -Y \\ I_{n_2} \end{bmatrix}, \begin{bmatrix} -X \\ I_{n_2} \end{bmatrix}.$$
(3)

Similarly, a pair of left deflating subspaces for (A_{11}, B_{11}) is given by the row spaces of:

$$\begin{bmatrix} I_{n_1} & X \end{bmatrix}, \begin{bmatrix} I_{n_1} & Y \end{bmatrix}.$$
 (4)

Moreover, the orthogonal equivalence transformations Q and Z swap the spectra of the diagonal blocks in $Q^{T}(A, B)Z$ if and only if:

$$\begin{bmatrix} -Y \\ I_{n_2} \end{bmatrix} = Z \begin{bmatrix} R_Y \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} I_{n_1} & X \end{bmatrix} = \begin{bmatrix} 0 & R_X \end{bmatrix} Q^T, \quad (5)$$

where R_X and R_Y are square and invertible.

Lemma: Kågström (1993) Let \tilde{X} and \tilde{Y} be the computed solutions of the generalized Sylvester equation (2). Let

$$E = -A_{12} - A_{11}\tilde{Y} + \tilde{X}A_{22}$$
, and, $F := -B_{12} - B_{11}\tilde{Y} + \tilde{X}B_{22}$

be their residuals and let $ilde{Q}$ and $ilde{Z}$ be the computed factors of the QR factorizations

$$\begin{bmatrix} -\tilde{Y} \\ I \end{bmatrix} = \tilde{Z} \begin{bmatrix} \tilde{R}_Y \\ 0 \end{bmatrix}, \begin{bmatrix} I \\ \tilde{X}^T \end{bmatrix} = \tilde{Q} \begin{bmatrix} 0 \\ \tilde{R}_X^T \end{bmatrix}.$$

Then the computed equivalence transformation satisfies:

$$\left(\begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \Delta_A & \tilde{A}_{22} \end{bmatrix}, \begin{bmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ \Delta_B & \tilde{B}_{22} \end{bmatrix} \right) = \tilde{Q}^T \left(\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix} \right) \tilde{Z},$$

where,

$$\begin{split} \|\Delta_A\|_2 &\leq \|E\|_F / \sqrt{(1 + \sigma_2(X)^2)(1 + \sigma_2(Y)^2)}, \\ \|\Delta_B\|_2 &\leq \|F\|_F / \sqrt{(1 + \sigma_2(X)^2)(1 + \sigma_2(Y)^2)}. \end{split}$$

This does *not* imply that $t(\Delta_A, \Delta_B)$ can be safely dismissed according to $\|\Delta_A\| \le \epsilon_m \|A\|_2$, $\|\Delta_B\| \le \epsilon_m \|B\|_2$. Nevertheless, the bound is often pessimistic.

Swapping 2×2 blocks: refinement (C.-Mastronardi-Vandebril-Van Dooren, 2019)

$$\left(\left[\begin{array}{cc}A_{11} & A_{12}\\ \Delta_A & A_{22}\end{array}\right], \left[\begin{array}{cc}B_{11} & B_{12}\\ \Delta_B & B_{22}\end{array}\right]\right)$$

System of quadratic matrix equations:

$$\Delta_A - A_{22}Y + XA_{11} - XA_{12}Y = 0, \Delta_B - B_{22}Y + XB_{11} - XB_{12}Y = 0,$$

for $X, Y \in \mathbb{R}^{n_1 \times n_2}$. Approximated by the system of linear matrix equations:

$$\Delta_A = A_{22}Y - XA_{11},$$
$$\Delta_B = B_{22}Y - XB_{11},$$

(6)

Swapping 2×2 blocks: refinement (C.-Mastronardi-Vandebril-Van Dooren, 2019) (cont.)

Orthonormal equivalence transformation:

$$Q_{up} = \begin{bmatrix} I_{n_2} & X^T \\ -X & I_{n_1} \end{bmatrix} \begin{bmatrix} R_X & 0 \\ 0 & R_X \tau \end{bmatrix}, \quad Z_{up} = \begin{bmatrix} I_{n_2} & Y^T \\ -Y & I_{n_1} \end{bmatrix} \begin{bmatrix} R_Y & 0 \\ 0 & R_Y \tau \end{bmatrix}$$

where R_X , R_{X^T} R_Y and R_{Y^T} normalize Q_{up} and Z_{up} as orthonormal.

Aggressive early deflation (Braman-Byers-Mathias, 2002)

Heuristics

Table 3: libRQZ settings: *n* problem size, *m* step multiplicity, *k* swap range, w_e AED window size at the bottom-right side of the pencil, w_s AED window size at the upper-left side of the pencil.

n	m	k	We	Ws
[1; 80[1—2	1—2	1—2	1—2
[80; 150[4	4	6	4
[150; 250[8	8	10	4
[250; 501[16	16	18	6
[501; 1001[32	32	34	10
[1001; 3000[64	64	66	16
[3000; 6000[128	128	130	32
[6000 ; ∞[256	256	266	48

Numerical experiments with libRQZ v0.1

Rational QR

The solution of $A\mathbf{x} = \lambda \mathbf{x}$ is often of practical interest.

Francis' QR method

Our rational QZ method

Our rational QZ method for $Ax = \lambda x$: Rational QR

Core transformations:

$$\begin{vmatrix} \vec{r} \\ \downarrow \end{vmatrix} = \begin{bmatrix} c & -s \\ s & \bar{c} \end{bmatrix}$$

Turnover operation:

 $|\xi_2| \ge |\xi_3|$

 $|\xi_2| < |\xi_3|$

п	# runs	ZLAHQR	ZLAHPS	%	
		$t_{CPU}(s)$	$t_{CPU}(s)$	t _{CPU}	
5	1000	$1.4\cdot 10^{-5}$	$1.4\cdot 10^{-5}$	100%	
10	1000	$6.0\cdot10^{-5}$	$5.6\cdot 10^{-5}$	93%	
20	500	$2.8\cdot 10^{-4}$	$2.4\cdot10^{-4}$	86%	
40	250	$1.6\cdot 10^{-3}$	$1.3\cdot10^{-3}$	81%	
80	125	$1.0\cdot 10^{-2}$	$7.4\cdot 10^{-3}$	74%	
150	80	$6.3\cdot10^{-2}$	$4.5\cdot10^{-2}$	71%	
300	80	$5.0\cdot 10^{-1}$	$3.2\cdot10^{-1}$	64%	
600	40	$3.6\cdot10^0$	$2.3\cdot 10^0$	64%	
1000	40	$1.6\cdot 10^1$	$1.0\cdot 10^1$	63%	

n	# runs	ZLAHQR BWE	ZLAHPS BWE	
5	1000	$1.8\cdot 10^{-15}$	$1.2\cdot10^{-15}$	
10	1000	$1.8\cdot 10^{-15}$	$1.4\cdot10^{-15}$	
20	500	$2.8\cdot 10^{-15}$	$1.8\cdot10^{-15}$	
40	250	$3.7\cdot 10^{-15}$	$2.6 \cdot 10^{-15}$	
80	125	$5.7\cdot 10^{-15}$	$3.7\cdot10^{-15}$	
150	80	$7.8\cdot10^{-15}$	$4.9 \cdot 10^{-15}$	
300	80	$1.1\cdot 10^{-14}$	$6.9\cdot10^{-15}$	
600	40	$1.5\cdot 10^{-14}$	$9.5\cdot10^{-15}$	
1000	40	$2.0\cdot10^{-14}$	$1.2 \cdot 10^{-14}$	

Rational LR and TTT

54
Rational LR and TTT

Conclusion

Conclusion and outlook

1. We have presented a novel interpretation of QR-type methods:

bulge chasing \leftrightarrow pole swapping.

- 2. This results in a more general class of algorithms
- 3. Convergence is determined by rational functions instead of polynomials
- 4. Faster and more flexible eigensolvers
- 5. Premature deflations during reduction
- 6. Backward stable
- 7. Explored the use of blocking and advanced deflation techniques (speedup with factor 6)
- 8. Applied the same principle to standard eigenvalue problem (speedup of 30%)
- 9. Tridiagonal generalized eigenvalue problems in $O(n^2)$ complexity

- Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the matrix eigenvalue problem. *Quart. Appl. Math.*, 9:17–29.
- Berljafa, M., and Güttel, S. (2015). Generalized rational Krylov decompositions with an application to rational approximation. *SIMAX*, 36(2):894–916.
- Braman, K., Byers R., and Mathias, R. (2002) The multishift QR algorithm. Part II: aggressive early deflation. *SIMAX*, 23(4):948–973.
- Camps, D., Meerbergen, K., and Vandebril, R. (2019). A rational QZ method. SIMAX 40(30):943-972.
- Camps, D., Meerbergen, K., and Vandebril, R. (2019). A multishift, multipole rational QZ method with aggressive early deflation. Submitted.
- Camps, D., Mach, T., Vandebril, R., and Watkins, D. S. (2019). On pole-swapping algorithms for the eigenvalue problem. Submitted.
- Camps, D. (2019). Pole swapping methods for the eigenvalue problem rational QR algorithms. PhD thesis.
- Camps, D., Mastronardi, N., Vandebril, R., and Van Dooren P. (2019). Swapping 2×2 blocks in the Schur and generalized Schur form. *JCAM* Available online.

References (cont.)

- Elsner, L., and Watkins, D. S. Convergence of algorithms of decomposition type for the eigenvalue problem. *Lin. Alg. Appl.*, 143:19–47.
- Francis, J. G. F. (1961-62) The QR transformation, a unitary analogue to the LR transformation Part 1 and 2 *The Computer Journal*.
- Kågström, B. (1993) A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A, B). In *Linear Algebra for Large Scale and Real-Time Applications*.
- Kublanovskaya, V. N. (1961) On some algorithms for the solution of the complete eigenvalue problem USSR Comp. Math. Phys. In Russian.
- Moler, C. B., and Stewart, G. W. (1973) An algorithm for generalized matrix eigenvalue problems. *SIAM J. Numer. Anal.*, 10(2):241–256.
- Ruhe, A. (1998) Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. *SISC*, 19(5):1535–1551
- Van Dooren, P. (1981) A generalized eigenvalue approach for solving Riccati equations SISC, 2(2):121-135
- Watkins, D. S. (1993) Some perspectives on the eigenvalue problem. SIREV, 35:430-471.