Approximate Quantum Circuit Synthesis using Block Encodings

Daan Camps Scalable Solvers Group

BERKELEY LAB OF THE PRESENTATION Science 1 and 1 2021 CS Area Postdoc Symposium

The challenge and promise of quantum computing

Quantum hardware

Quantum algorithms Software stack

Promise: *Quantum speedups for some classically intractable problems*

This talk:

New solution to the *quantum circuit synthesis* problem leveraging matrix and tensor decompositions and using *block encodings*

Tensor product structure of quantum states

BERKELEY LAB Office of Science

Quantum algorithms: unitaries with efficient quantum circuits

Synthesis: A well studied subject with many different approaches

Algebraic Techniques

Cosine-Sine Decomposition

Image: Shende, Bullock, Markov (2006)

KAK Decomposition

Givens QR Decomposition

Image: Vartiainen, Mötiönen, Salomaa (2004)

Optimization Techniques

Image: Younis, Sen, Yelick, Iancu (2020)

Repeat-Until-Success Techniques

BERKELEY LAB $\begin{array}{cc} \texttt{S} & \texttt{S} & \texttt{S} & \texttt{S} \ \texttt{B} & \texttt{S} & \texttt{S} & \texttt{S} \end{array} \begin{array}{c} \texttt{S} & \texttt{S} & \texttt{S} & \texttt{S} \ \texttt{S} & \texttt{S} & \texttt{S} \end{array} \begin{array}{c} \texttt{S} & \texttt{S} & \texttt{S} \ \texttt{S} & \texttt{S} & \texttt{S} \ \texttt{S} & \texttt{S} & \texttt{S} \ \texttt{S} & \texttt$

Computational tool from numerical linear algebra

Tensor Rank Decomposition

- Widely used in:
	- numerical linear algebra
	- scientific computing
	- data analysis
- Uniqueness
- Good optimization algorithms

Tensorizing the unitary

Decompose the tensor

Matricizing the rank-1 tensors

Unitary decomposed in tensor rank-1 matrices

More or less a quantum circuit diagram

Relaxing unitary constraints using block encodings

$$
M \longrightarrow U := \begin{bmatrix} M & * \\ * & * \end{bmatrix} \longrightarrow \begin{array}{c} \ket{0}^{\otimes a} & \not\longrightarrow \\ \ket{\psi_s} & \not\longrightarrow \end{array} \begin{array}{c} \boxed{\mathcal{A}} = 0 \\ M \ket{\psi_s} \end{array}
$$

- Embed the non-unitary matrix M in a larger unitary matrix U
- Distinction between additional *ancilla* qubits and *signal* qubits
- Measurement of *ancilla* qubits
	- Probabilistic implementation of M, similar to Repeat-Until-Success strategy
- Amplitude amplification

Combining block encodings in tensor products

Sums of block encodings

$$
y_1M^{(1)} + y_2M^{(2)} + \cdots + y_mM^{(m)}
$$

\n
$$
U^{(i)} = \begin{bmatrix} M^{(i)} & * \\ * & * \end{bmatrix} \xrightarrow{\log_2(m)} \frac{\sqrt{Q}}{s} \xrightarrow{\sqrt{Q}} \frac{\sqrt{Q}}{U^{(1)}} \frac{\sqrt{Q}}{U^{(2)}} \cdots \frac{\sqrt{Q}}{U^{(m)}} \cdots
$$

\n
$$
Q = \frac{1}{\|y\|_1} \begin{bmatrix} \sqrt{y_1} & * & \cdots & * \\ \sqrt{y_2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{y_m} & * & \cdots & * \end{bmatrix} U = \begin{bmatrix} y_1M^{(1)} + y_2M^{(2)} + \cdots + y_mM^{(m)} & * \\ * & * & * \end{bmatrix}
$$

Bringing it all together

5

This circuit construction has a sub-exponential efficient gate complexity if:

- the tensor rank is sub-exponential
- efficient circuits exist for the individual block encodings

Localized Hamiltonians have low-rank tensor structure

Conclusion

- Block encodings can be easily combined through:
	- Tensor/Kronecker products
	- Linear combinations

- Low-rank tensor decompositions lead to efficient quantum circuits that scale well
- Many problems naturally have (approximate) low-rank tensor structure
	- Localized Hamiltonians
	- Discretized differential operators

Reference: Camps D. and Van Beeumen R., *Approximate quantum circuit synthesis using block encodings*, Phys. Rev. A 102, 052411. DOI:10.1103/PhysRevA.102.052411. arXiv:2007.01417.

