
BERKELEY LAB Office of
Science1

FunFact

Daan Camps
Scalable Solvers Group
Applied Mathematics and Computational Research Division

2022 CS Postdoc Symposium
Presentation

Camera space
Build Your Own Tensor Decomposition
Model in a Breeze

BERKELEY LAB Office of
Science2

Camera space
Tensors decompositions have many applications

Multiway data

Image and video compression

Unsupervised learning: Blind source separation

Quantum physics

BERKELEY LAB Office of
Science3

Decompositions

A zoo of decompositions and algorithms
Camera space

- 3 -

Algorithms
- Bidiagonalization
- Alternating Least-Squares
- CG
- ADMM
- DMRG
- Gradient based
- …

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear
Universe of all possible decompositions

BERKELEY LAB Office of
Science4

Instantaneous time-to-algorithm

- 4 -

Camera space

Process of days/weeks/months/years
Expert knowledge required

FunFact workflow:
- Write model as (nonlinear) tensor

expression
- Factorize data and validate results

Process of minutes/hours
Accessible for non-experts

Traditional workflow:
- Analyze model
- Formulate and implement

algorithm
- Validate results

BERKELEY LAB Office of
Science5

Behind the scenes of FunFact

a tensor algebra language through an embedded
domain specific language (eDSL) that combines
NumPy API and generalized Einstein notations

- 5 -

Camera space
Frontend:

Backend: modern NLA libraries that support autograd

Algorithm: stochastic gradient descent with multi-replica
learning

BERKELEY LAB Office of
Science6

Hello World

!pip install funfact

import funfact as ff

Camera space

a = ff.tensor('a', 50, 3)

b = ff.tensor('b', 3, 20)
i, j, k = ff.indices('i, j, k')

- 6 -

install from PyPI and load

declare tensors and indices
tsrex = a[i, k] * b[k, j]

target = load_data(...)

ff.factorize(target, tsrex)

write tensor expression

factorize target tensor

Lazy evaluation: writing down a tensor expression does not trigger immediate
evaluation. Rather, the AST of the calculation is saved for future use.

BERKELEY LAB Office of
Science7

Complex decompositions in a concise expression

- 7 -

Camera space

tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3]

tensor_rank = (a[i, ~r] * b[j, r]) * c[k, r]

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *

 G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]

Tucker decomposition

Tensor-rank decomposition

Tensor train decomposition

BERKELEY LAB Office of
Science8

Image compression through nonlinear factorization

U, S, V = np.linalg.svd(img)

- 8 -

Camera space
SVD gives the best rank-r approximation

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

BERKELEY LAB Office of
Science9

- 9 -

Camera space

low_rank = u[i, r] * v[j, r]

FunFact finds the same solution

Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

BERKELEY LAB Office of
Science1

0 - 10 -

Camera space
rbf = ff.exp(-(u[i, ~k] - v[j, ~k])**2) * a[k] + b[[]]

arXiv:2106.02018

Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

BERKELEY LAB Office of
Science1

1 - 11 -

Camera space
Nonlinear models achieve lower loss for same data
complexity

24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

SVD

RBF

BERKELEY LAB Office of
Science1

2

Quantum circuit compilation as a tensor
decomposition

- 12 -

- Quantum circuit synthesis or compilation is the task of finding a
quantum gate representation for a given unitary operator

- This problem can be formulated as a tensor decomposition problem

Camera space

BERKELEY LAB Office of
Science1

3

Quantum Circuit Synthesis of Fourier Transform

- 13 -

Camera space

Quantum Fourier Transform DOI: 10.1002/nla.2331

- O((log N)2) circuit is known

- Might not correspond to hardware qubit topology

BERKELEY LAB Office of
Science1

4

Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity

- 14 -

Camera space

def two_qubit_gate(i: int, n: int):
 G = ff.tensor(4, 4, prefer=cond.Unitary)
 return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3) @ \
 two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3) @ \
 two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3)

BERKELEY LAB Office of
Science1

5

Optimizing the circuit as a tensor expression

- 15 -

Camera space
circuit3_fac = ff.factorize(QFT3, circuit3, ...)

loss: 0.009713371542746886

penalty: 8.032669575186446e-05

BERKELEY LAB Office of
Science1

6

The Team

FunFact is developed in collaboration with:
● Yu-Hang Tang (SSG)

● Liza Rebrova (previous contributor)

- 16 -

Camera space

Funding acknowledgment:
LDRD No. DE-AC02-05CH11231

BERKELEY LAB Office of
Science1

7

Conclusion

- FunFact is a rich and flexible language for (non-)linear
tensor algebra expressions

- FunFact can solve the inverse problem thanks to modern NLA backends such as
JAX and PyTorch

- Dramatically reduced time-to-algorithm for new tensor factorization models

- 17 -

Camera space

Released V1.0RC under BSD license

Find out more at:

● funfact.readthedocs.io
● github.com/yhtang/FunFact/
● pypi.org/project/funfact/

We’re looking for users and
applications!

Don’t hesitate to reach out at
dcamps@lbl.gov

https://funfact.readthedocs.io/en/latest/
https://github.com/yhtang/FunFact/
https://pypi.org/project/funfact/
mailto:dcamps@lbl.gov

