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Camera space
Tensors decompositions have many applications

Multiway data

Image and video compression

Unsupervised learning: Blind source separation

Quantum physics
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Decompositions

A zoo of decompositions and algorithms
Camera space
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Algorithms
- Bidiagonalization
- Alternating Least-Squares
- CG
- ADMM
- DMRG
- Gradient based
- …

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear
Universe of all possible decompositions
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Instantaneous time-to-algorithm
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Camera space

Process of days/weeks/months/years
Expert knowledge required

FunFact workflow:
- Write model as (nonlinear) tensor 

expression
- Factorize data and validate results

Process of minutes/hours
Accessible for non-experts

Traditional workflow:
- Analyze model
- Formulate and implement 

algorithm
- Validate results
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Behind the scenes of FunFact

a tensor algebra language through an embedded 
domain specific language (eDSL) that combines 
NumPy API and generalized Einstein notations
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Camera space
Frontend:

Backend: modern NLA libraries that support autograd

Algorithm: stochastic gradient descent with multi-replica 
learning
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Hello World

!pip install funfact

import funfact as ff

Camera space

a = ff.tensor('a', 50, 3)

b = ff.tensor('b', 3, 20)
i, j, k = ff.indices('i, j, k')
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install from PyPI and load

declare tensors and indices
tsrex = a[i, k] * b[k, j]

target = load_data(...)

ff.factorize(target, tsrex)

write tensor expression

factorize target tensor

Lazy evaluation: writing down a tensor expression does not trigger immediate 
evaluation. Rather, the AST of the calculation is saved for future use.
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Complex decompositions in a concise expression
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tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3]

tensor_rank = (a[i, ~r] * b[j, r]) * c[k, r]

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *

               G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]

Tucker decomposition

Tensor-rank decomposition

Tensor train decomposition
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Image compression through nonlinear factorization

U, S, V = np.linalg.svd(img)
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Camera space
SVD gives the best rank-r approximation

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3
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low_rank = u[i, r] * v[j, r]

FunFact finds the same solution

Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3
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rbf = ff.exp(-(u[i, ~k] - v[j, ~k])**2) * a[k] + b[[]]

arXiv:2106.02018

Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3
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Nonlinear models achieve lower loss for same data 
complexity

24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

SVD

RBF
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Quantum circuit compilation as a tensor
decomposition
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- Quantum circuit synthesis or compilation is the task of finding a 
quantum gate representation for a given unitary operator

- This problem can be formulated as a tensor decomposition problem

Camera space
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Quantum Circuit Synthesis of Fourier Transform
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Quantum Fourier Transform DOI: 10.1002/nla.2331

- O( (log N)2) circuit is known

- Might not correspond to hardware qubit topology
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Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity
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def two_qubit_gate(i: int, n: int):
    G = ff.tensor(4, 4, prefer=cond.Unitary)
    return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3) @ \
           two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3) @ \
           two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3)
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Optimizing the circuit as a tensor expression
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circuit3_fac = ff.factorize(QFT3, circuit3, ...)

loss: 0.009713371542746886

penalty: 8.032669575186446e-05
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The Team

FunFact is developed in collaboration with:
● Yu-Hang Tang (SSG)

● Liza Rebrova (previous contributor)
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Funding acknowledgment:
LDRD No. DE-AC02-05CH11231
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Conclusion

- FunFact is a rich and flexible language for (non-)linear 
tensor algebra expressions

- FunFact can solve the inverse problem thanks to modern NLA backends such as 
JAX and PyTorch

- Dramatically reduced time-to-algorithm for new tensor factorization models
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Released V1.0RC under BSD license

Find out more at:

● funfact.readthedocs.io 
● github.com/yhtang/FunFact/ 
● pypi.org/project/funfact/ 

We’re looking for users and 
applications! 

Don’t hesitate to reach out at 
dcamps@lbl.gov

https://funfact.readthedocs.io/en/latest/
https://github.com/yhtang/FunFact/
https://pypi.org/project/funfact/
mailto:dcamps@lbl.gov

