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Introduction

This presentation is based on joint work with Stefan Güttel, Thomas Mach &

Raf Vandebril.
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Introduction

What has been done:

• The approximate inverse-free extended Krylov method was introduced by Mach

Pranić and Vandebril (2013) and generalized to the rational case by the same

authors in 2014.

• The authors illustrate the power of these methods for computing f (A)v , solving

matrix equations, and computing rational Ritz values.

• Jagels Mach Reichel and Vandebril (2016) showed that the inverse-free methods

have a geometric convergence rate to the exact rational Krylov subspace.
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Introduction

How do these methods work?1

KM(A, v)  Krat
m (A, v ,Ξ)

• Ξ = (ξ1, . . . , ξm−1) ∈ C̄ \ Λ : tuple of poles.

• m� M : oversampling.

• Implicit approach using similarity transformations, cfr. QR-type algorithms.

1omitting all the crucial details for a minute.
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Introduction

What will we see today?

FOM Implicit similarity Implicit equivalence Explicit FOM

GMRES ? Explicit GMRES
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Introduction

We will require and touch upon:

• Krylov subspaces, Arnoldi, essential uniqueness, implicit Q theorem

• rational Krylov subspaces, rational Arnoldi, essential uniqueness, implicit Q

theorem

• Projected counterparts

• Minimal residual conditions

6



Classical Krylov

(m+1)st order Krylov subspace for A ∈ CN×N , v ∈ CN \ {0}

Km+1(A, v) := R(v ,Av , . . . ,Amv).

Arnoldi decomposition:

AVm = Vm+1Hm = VmHm + Vm+1Rm with Rm = hm+1,mem+1e
T
m

• R(Vm+1) = Km+1(A, v),

• Vm+1e1 = v/‖v‖2,

• Hm an (m + 1)×m proper upper Hessenberg.

We assume throughout the talk that breakdown does not occur.If it does happen, the approximate

rational Krylov method would give an exact result.
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Classical Krylov

Uniqueness and implicit Q

Let (Vm+1,Hm) and (V̂m+1, Ĥm) both be Arnoldi pairs for A satisfying v1 = σv̂1,

|σ|= 1. Then,

(Vm+1,Hm) = (V̂m+1Dm+1,D
∗
m+1ĤmDm),

with Dm+1 a unitary diagonal matrix.

→ The Arnoldi pair (Vm+1,Hm) is determined essentially unique if v is fixed.

→ (Vm+1,Hm) and (V̂m+1, Ĥm) belong to the same equivalence class 〈Vm+1,Hm〉.
→ One-to-one correspondence between 〈Vm+1,Hm〉 and Km+1(A, v).
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Classical Krylov

Orthogonal projected counterpart(s)

Orthogonal projection of A on Km+1(A, v):

V ∗m+1AVm+1 =
[
Hm V ∗m+1Avm+1

]

Orthogonal projection of A on Km(A, v):

V ∗mAVm = Hm =

× × × × ×
× × × ×
× × ×
× ×
×

×
×
×
×

→ unique up to similarity transformation with Dm.
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Rational Krylov

Rational Krylov subspace for A ∈ CN×N , v ∈ CN \ {0}, Ξ ∈ C̄m

Krat
m+1(A, v ,Ξ) := q(A)−1Km+1(A, v),

with Ξ = (ξ1, . . . , ξm), ξi ∈ C̄ \ Λ, q(z) =
∏
ξi∈Ξ\∞(z − ξi ).

rational Arnoldi decomposition

AVm+1Km = Vm+1Lm

• R(Vm+1) = Krat
m+1(A, v ,Ξ),

• Vm+1e1 = v/‖v‖2,

• (Lm,Km) proper upper Hessenberg pair,

• Pole tuple Ξ(Lm,Km) = (`21/k21, . . . , `m+1,m/km+1,m) = (ξ1, . . . , ξm) = Ξ.
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Rational Krylov

Uniqueness and implicit Q by Berljafa and Güttel (2015)

Let (Vm+1, Lm,Km) and (V̂m+1, L̂m, K̂m) both be rational Arnoldi triplets for A sat-

isfying Ξ = Ξ̂ and v1 = σv̂1, |σ|= 1. Then,

(Vm+1, Lm,Km) = (V̂m+1Dm+1,D
∗
m+1L̂mTm,D

∗
m+1K̂mTm),

with Dm+1 a unitary diagonal matrix and Tm an invertible upper triangular.

→ (Vm+1, Lm,Km) is determined essentially unique if both Ξ and v are fixed.

→ Equivalence class 〈Vm+1, Lm,Km〉, satisfying Ξ〈Lm,Km〉 = Ξ.

→ One-to-one correspondence between 〈Vm+1, Lm,Km〉 and Krat
m+1(A, v ,Ξ).
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Rational Krylov

Orthogonal projected counterpart(s) (Berljafa, 2017)

Orthogonal projection of A on Krat
m+1(A, v ,Ξ):

V ∗m+1AVm+1

Orthogonal projection of A on R(Vm+1Km) = Km(A, q(A)−1v):

(Vm+1Km)†A(Vm+1Km) = K †mLm
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Rational Krylov

Orthogonal projected counterpart(s) (C. Meerbergen and Vandebril, 2019)

The matrix K †mLm is of rational Hessenberg form:

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��
��
��

+

d1
d2
d3
d4
d5
d6

Q R + D

• CiCi+1 if ξi+1 =∞
• Ci+1Ci if ξi+1 6=∞
• di = ξi if ξi 6=∞
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Rational Krylov

Same idea:

• Let (A,B) be a proper Hessenberg pencil, B invertible. Then both B−1A and

AB−1 are proper rational Hessenberg matrices.

• Conversely, for any proper rational Hessenberg matrix M there is a proper

Hessenberg pencil (A,B) such that M = B−1A.
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Implicit Similarity Transformation (Mach Pranić and Vandebril, 2014)

The approximate rational Krylov method of Mach Pranić and Vandebril (2014)

constructs a unitary similarity transformation to transform the Arnoldi Hessenberg

matrix Hm to rational Hessenberg form:

Q∗m

××××××
×××××
××××
×××
××
×

×
×
×
×
×

Qm =

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��
��
��

+

d1
d2
d3
d4
d5
d6

Remark: without changing the first row/column of Hm → q1 = e1.
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Implicit Similarity Transformation (Mach Pranić and Vandebril, 2014)

We start from an Arnoldi decomposition:

AVm = VmHm + Vm+1Rm,

and transform it to:

AV̂m = V̂mĤm + V̂m+1R̂m,

• Approximate rational Krylov basis : V̂m = VmQm, V̂m+1 = Vm+1diag(Qm, 1)

• Starting vector unchanged: v̂1 = v1

• Rational Hessenberg form : Ĥm = Q∗mHmQm

• Rank-one residual term : R̂m = diag(Q∗m, 1)RmQm = hm+1,mem+1qT
m

⇒ the approximation will be accurate:

• if |hm+1,m| is small (exact rational Krylov if zero).

• for columns v̂i where |qm,i | is small.
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Implicit Equivalence Transformation

We use two pole manipulation techniques from the rational QZ method (C.

Meerbergen and Vandebril, 2019b).

Let (A,B) be an n × n proper Hessenberg pencil with pole tuple (ξ1, . . . , ξn−1):

• Changing the last pole : (A,B)Zn−1 such that (ξ1, . . . , ξ̂n−1).

• Swapping consecutive poles : Q∗i+1(A,B)Zi such that (ξ1, . . . , ξi+1, ξi , . . . , ξn−1).
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Implicit Equivalence Transformation

We can use these two operations on the Arnoldi Hessenberg pencil (Hm, Im):

• Ξ(Hm, Im) = (∞, . . . ,∞)

• (Hm, Im)Zm−1 such that (∞, . . . ,∞, ξ1)

• Q∗(Hm, Im)Z such that (ξ1,∞, . . . ,∞). Remark: q1 = e1.

• . . .

• Q̂∗(Hm, Im)Ẑ such that (ξ1, . . . , ξk ,∞, . . . ,∞︸ ︷︷ ︸
oversampling

)

18
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Implicit Equivalence Transformation

We start again from an Arnoldi decomposition:

AVm = VmHm + Vm+1Rm,

and transform it to:

AV̂mK̂m = V̂mL̂m + V̂m+1R̂m,

• Approximate rational Krylov basis : V̂m = VmQm, V̂m+1 = Vm+1diag(Qm, 1)

• Starting vector unchanged : v̂1 = v1

• Proper Hessenberg pair : (L̂m, K̂m) = Q∗m(Hm, Im)Zm

• Rank-one residual term : R̂m = diag(Q∗m, 1)RmZm = hm+1,mem+1zT
m

19
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Implicit Equivalence Transformation

⇒ This is mathematically equivalent to the approach of Mach Pranić and Vandebril

(2014), i.e.

V̂ eqv
m = V̂ sim

m Dm.

Proof:

• Qsim
m is essentially unique if structure and starting vector are fixed (Mach Pranić

and Vandebril, 2014).

• Qeqv
m is essentially unique if structure and starting vector are fixed (C. Meerbergen

and Vandebril, 2019b).

• L̂mK̂
−1
m = Qeqv ,∗

m Hm(ZmZ
∗
m)Qeqv

m has the same structure as Ĥm = Qsim,∗
m HmQ

sim
m

(C. Meerbergen and Vandebril, 2019).
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Implicit Equivalence Transformation

Main advantages over implicit similarity transformation:

• arguably easier to implement

• link with rational QZ provides further theoretical insights, e.g. placing Ritz values

as poles could cause deflations.
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Explicit FOM

A third equivalent interpretation: rational Krylov within classical Krylov.

• Let (Vm+1,Hm) be the Arnoldi pair corresponding to Km+1(A, v).

• Consider the rational Arnoldi triplet (Wk+1, Lk ,K k) corresponding to

Krat
k+1(Hm, e1, (ξ1, . . . , ξk)), k < m.

Then, combining AVm = VmHm + Vm+1Rm and HmWk+1K k = Wk+1Lk , we get:

AVmWk+1︸ ︷︷ ︸
V̌k+1

K k = Vm HmWk+1K k︸ ︷︷ ︸
Wk+1Lk

+Vm+1RmWk+1K k

⇒ AV̌k+1K k = V̌k+1Lk + Vm+1Řm, with Řm = em+1eT
mWk+1K k .
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mWk+1K k .

22



Explicit FOM

A third equivalent interpretation: rational Krylov within classical Krylov.

• Let (Vm+1,Hm) be the Arnoldi pair corresponding to Km+1(A, v).

• Consider the rational Arnoldi triplet (Wk+1, Lk ,K k) corresponding to

Krat
k+1(Hm, e1, (ξ1, . . . , ξk)), k < m.

Then, combining AVm = VmHm + Vm+1Rm and HmWk+1K k = Wk+1Lk , we get:

AVmWk+1︸ ︷︷ ︸
V̌k+1

K k = Vm HmWk+1K k︸ ︷︷ ︸
Wk+1Lk

+Vm+1RmWk+1K k

⇒ AV̌k+1K k = V̌k+1Lk + Vm+1Řm, with Řm = em+1eT
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Explicit FOM

It follows from the uniqueness of rational Arnoldi triplets (Berljafa and Güttel, 2015)

that:

V̂ eqv
k+1 ≡ V̂ sim

k+1 ≡ V̌ FOM
k+1 .

Where is the link with the Full Orthogonalization Method?

To compute (Wk+1, Lk ,K k), we solve shifted-linear systems (Hm − ξIm)xm = bm!
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Explicit GMRES

GMRES extension: Solve shifted least-squares problems instead:

min
xm∈Cm

‖b − (Hm − ξIm)xm‖2

The resulting algorithm computes:

AV̆k+1K̆ k = V̆k+1L̆k + Vm+1R̆m

• For i = 1, . . . , k + 1,

Vm+1r̆i ⊥ (A− ξi I )Km(A, v)

• rank(R̆m) = # distinct poles in Ξ
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Implicit GMRES

• We know how to do it using a pole swapping method if there is only a single finite

pole.

• From the normal equations for the shifted Hessenberg LS problem, we get that:

H̃m = Hm + |hm+1,m|2f ξmeT
m ,

with f ξm = (Hm − ξ1Im)−∗em

• Placing the pole ξ1 in (H̃m, Im) is equivalent to an explicit GMRES approximate

rational Krylov step as we enforce Vm+1r̆1 ⊥ (A− ξ1I )Km(A, v)

• This also requires a shifted linear system.
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Numerical proof of concept

• Brusselator Wave Model BWM200

from MatrixMarket

• R200×200

• Ξ = (−1050,−50,−1050,−50)

• v constant entries

• Krat
5 (A, v , (−1050,−50,−1050,−50))

• KM(A, v)
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Numerical proof of concept
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Numerical proof of concept
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Numerical proof of concept
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Conclusion

• We reviewed the approximate rational Krylov method of Mach Pranić and

Vandebril (2014)

• We presented two equivalent algorithms: implicit pole swapping method and

explicit FOM method

• Main advantages: more straightforward to implement, further theoretical insights

• We presented an extension to an explicit GMRES method

Thank you
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