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Introduction to Quantum Computing
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Dimension of a quantum state grows 
exponentially with the number of particles

2^300 = 
2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397376

A complete description of a typical quantum state of 
just 300 qubits requires more bits than the number 

of atoms in the visible universe 
(figure from John Preskill).

Google Sycamore chip (2019) 
53 qubits

2^53 ≅ 9 * 10^15 ≅ 36PB (single precision)
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Quantum computing from 10000 ft
Two things are required for quantum computation:

• An encoding of the data in the quantum state |𝚿>
• A way to control the evolution towards an encoding of the 

solution

Quantum computers 
are coherently 

controllable quantum 
systems

Advanced Quantum 
Testbed @ Berkeley Lab
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Qubits represent quantum data

Math: 2-dimensional complex 
vectors with unit norm

Physics: two-level quantum system

Quantum Gates: change state of a qubit

U is unitary

Unitary matrices preserve the norm of the 
vector (quantum operations are 

Hamiltonian time evolution)
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IBMQ Brooklyn

direction of 
computationeach line is 

a qubit

Multi-qubit states and quantum circuits

1 qubit   → 2 basis states
2 qubits → 4 basis states

….
n qubits → 2n basis states



Hamiltonian simulation and Trotterization
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Hamiltonian simulation
Simulate time evolution under Schrödinger equation for a time-dependent Hamiltonian

Hermitian matrix

Solved by applying the time-evolution operator:

to the initial state:

Time-independent case:
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Trotter splitting and time discretization
Trotter decomposition (or operator splitting):
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1D Spin-1/2 Hamiltonians
Pauli spin-½ matrices:

Basis for:                  Generators for:

Transverse field XY model:
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Circuit diagrams

Single-qubit rotation over Pauli-ɑ axis (ɑ ∈ {x, y, z}):

Two-qubit rotation over Pauli-ɑ axis (ɑ ∈ {x, y, z}):

Easy operations to execute on QC: Native gate for ion traps, 2 CNOTs for superconducting



Algebraic compression of Hamiltonian 
simulation circuits 
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Definition
A block is a parametrized and indexed family of operators                 that satisfy 3 properties:

● Fusion:

● Commutativity: |i - j| > 1

● Turnover:
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Central mechanism in our compression algorithm

Equivalent mechanism as in core-chasing eigenvalue algorithms, but on operators of 
exponential dimension.

Core-Chasing Algorithms for the Eigenvalue Problem, Aurentz, Mach, Robol, Vandebril, Watkins
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Transforming squares to triangles
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Merging time-steps into triangles

Even/odd blocks act on independent parts of the triangle. In our implementation, these 
are merged in parallel
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Euler decomposition and turnover of SU(2)

Lemma: SU(2) turnover

Let ɑ, β ∈ {x, y, z}, ɑ≠β. For every θ1, θ2, θ3, there exist θa, θb, θc such that 

Lemma: Euler decomposition

Let ɑ, β ∈ {x, y, z}, ɑ≠β. Every U ∈ SU(2) can be represented as: 

→ We can compute the SU(2) turnover backward stable (Givens rotations)
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SU(2) groups in disguise
Lemma:

Let ɑ, β ∈ {x, y, z}, ɑ≠β. The following operations are also dual Euler decompositions of SU(2):

Fusion operations are trivial:
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Kitaev Chain
A Kitaev chain is a Hamiltonian of the form:

For example:
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TFIM Hamiltonian
The Transverse-Field Ising Model has the form:

N-qubit TFIM is isomorphic to 2N-qubit Kitaev chain
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TFXY Hamiltonian
Transverse field XY model:

TFXY block:

Turnover through simultaneous diagonalization



Results
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Numerical results: timings
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Numerical results: backward error
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Quantum Computer: Adiabatic State Preparation
● Time evolve TFIM in ground state from trivial state w/o coupling to more complicated 

ground state with coupling terms
● 5 qubit model on IBMQ Brooklyn
● Measure the average magnetization
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Conclusion

● Efficient and stable classical numerical algorithm for compression of quantum circuits 
for simulation of integrable TFXY chains 

● Enables simulation of small systems on current generation noisy quantum hardware
○ Prepare non-trivial states 
○ Simulate interesting physics phenomena

● Extensions to 2D non-interacting, controlled evolutions, … 

arXiv:2108.03282, arXiv:2108.03283

Fast Free Fermion Compiler (F3C): 
https://github.com/QuantumComputingLab 

https://github.com/QuantumComputingLab

