

Pole swapping methods for the eigenvalue problem

Rational QR algorithms

Daan Camps ICIAM 2019, Valencia July 16, 2019

KU Leuven - University of Leuven - Department of Computer Science - NUMA Section

1

Collaborators:

- Raf Vandebril
- Karl Meerbergen
- Paul Van Dooren
- Thomas Mach
- David Watkins
- Nicola Mastronardi

Overview

Introduction

- Generalized eigenvalue problems
- Bulge chasing
- Pole swapping
 - Rational Krylov
 - Rational QZ
 - Rational accelerated subspace iteration
- Multishift, multipole rational QZ
- Conclusion

Introduction

- Let $A, B \in \mathbb{F}^{n \times n}$ define a matrix pair (A, B) or matrix pencil $A \lambda B$.
- Regular: $det(A \lambda B) \neq 0$.
- Generalized eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x}, \quad \lambda \in \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}.$$

• For a regular matrix pencil $A - \lambda B$ there exists unitary matrices Q and Z such that

 $S - \lambda T = Q^* (A - \lambda B) Z$

with $S - \lambda T$ upper triangular and $\Lambda(A, B) = \{s_{11}/t_{11}, s_{22}/t_{22}, \ldots\}$.

• The QZ method (Moler-Stewart, 1973) is the default algorithm to compute the generalized Schur decomposition.

- The QZ method generalizes the QR method of (Francis, 1961-62) for the standard eigenvalue problem
- It is a bulge chasing algorithm which consists out of two phases:
 - 1. Initial (direct) reduction to equivalent Hessenberg, upper triangular form

 $H - \lambda R = Q^* (A - \lambda B) Z$

2. Iterative bulge chasing phase to compute (real) generalized Schur decomposition

 $S - \lambda T = Q^* (A - \lambda B) Z$

Bulge chasing =

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $\boldsymbol{q}_1 = p(AB^{-1})\boldsymbol{e}_1$

• Nested subspace iteration with a change of basis accelerated by polynomials (shifts) (Elsner-Watkins, 1991; Watkins, 1993)

 \rightarrow These results are based on a connection with Krylov subspaces.

Pole swapping

Polynomial	Rational		
	rational Krylov subspace		
$\frac{Krylov subspace}{\mathcal{K}_{m+1}(A, \mathbf{v}) := \mathcal{R}(\mathbf{v}, A\mathbf{v}, \dots, A^m\mathbf{v})$	$\mathcal{K}^{rat}_{m+1}(A,oldsymbol{ u},\Xi):=q(A)^{-1}\mathcal{K}_{m+1}(A,oldsymbol{ u})$		
	$\bullet \equiv = (\xi_1, \ldots, \xi_m) \subset \bar{\mathbb{C}} \setminus \Lambda$		
	• $q(z) = \prod_{\xi_i eq \infty} (z - \xi_i)$		
$\frac{\text{Arnoldi Decomposition}}{AV_m = V_{m+1}\underline{H}_m}$ (Arnoldi, 1951)	rational Arnoldi (Ruhe, 1998)		
	$AV_{m+1}\underline{K}_m = V_{m+1}\underline{L}_m$		
	• $\ell_{i+1,i}/k_{i+1,i} = \xi_i$		
Uniqueness	Uniqueness (Berljafa-Güttel, 2015)		
$m{v}$ fixed $\Leftrightarrow (V_{m+1}, \underline{H}_m)$ unique	$m{ u}$ and Ξ fixed \Leftrightarrow $(V_{m+1}, \underline{K}_m, \underline{L}_m)$ unique		

Rational Krylov

Berljafa-Güttel (2015)

Two methods to change the poles in a rational Arnoldi decomposition

$$AV_{m+1}\underline{K}_m = V_{m+1}\underline{L}_m$$

- Implicitly by changing v_1
- Explicitly by pole swapping
- \Rightarrow Equivalent if $\mathcal{R}(V_{m+1})$ is fixed.

C.-Meerbergen-Vandebril (2019a)

The pole swapping technique can be used as a direct method for the eigenvalue problem: rational QZ algorithm.

Rational QZ

Hessenberg pencils

- - B

•

Rational QZ

Hessenberg pencils

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times$ $\times \times \times$ XX

- - - \mathbf{x}
 - ××

B

•

Rational QZ

Hessenberg pencils

Introducing a shift

 \times \times \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times$ $(\mathbf{d}) \times \times \times \times \times$ $(e) \times \times \times$ $(f) \times \times$ Ø X

Introducing a shift

Introducing a shift

 \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes \otimes $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times \times$ $(\mathbf{d}) \times \times \times \times \times$ $(e) \times \times \times$ $(f) \times \times$ **g**) ×

Swapping poles

Swapping poles

Classical problem in NLA: Reordering generalized Schur form

(Van Dooren, 1981), (Kågström, 1993), (C.-Mach-Vandebril-Watkins, 2019)

$$\Rightarrow Q^* = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix} \quad , Z = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}$$

Swapping poles

Table 1: Distribution of errors $\hat{a}_{21}/||A||$ and $\hat{b}_{21}/||B||$ for our method, Van Dooren's method, and the Sylvester method.

$\hat{x}_{21}/\ X\ $		$\left[0,10^{-16}\right]$	$\left(10^{-16},10^{-15}\right]$	$\left(10^{-15},10^{-10}\right]$	$\left(10^{-10},10^{-5}\right]$	$\left(10^{-5},10^0\right]$
Our method	A	99.71%	0.29%	0%	0%	0%
	B	99.85%	0.15%	0%	0%	0%
Van Dooren	A	98.19%	0.55%	0.93%	0.27%	0.06%
	B	98.19%	0.55%	0.93%	0.27%	0.06%
Sylvester	A	93.34%	5.88%	0.57%	0.17%	0.04%
	B	93.34%	5.88%	0.57%	0.17%	0.04%

Swapping poles

 \times \times \times \times \times \times \times \times $\overline{\mathbf{c}} \times \times \times \times \times$ $(d) \times \times \times \times \times$ $e \times \times \times$ $(f) \times \times$ g) X

Swapping poles

 $(g) \times$

Swapping poles

Swapping poles

 $\times \times \otimes \otimes \times \times \times \times$ $(b) \times \otimes \otimes \times \times \times \times \times$ $(c) \otimes \otimes \times \times \times \times \times$ $(\mathbf{d}) \otimes \otimes \otimes \otimes \otimes \otimes$ $\Theta \otimes \otimes \otimes \otimes$ $e \times \times \times$ $(f) \times \times$ $(g) \times$

Swapping poles

Swapping poles

Swapping poles

 \times \times \times \times \times \otimes \otimes \times $(\mathbf{b}) \times \times \times \times \otimes \otimes \times$ $(c) \times \times \times \otimes \otimes \times$ $(\mathbf{d}) \times \times \otimes \otimes \times$ $(e) \times \otimes \otimes \times$ $(f) \otimes \otimes \times$ \otimes $(g) \times$

Introducing a pole

Introducing a pole

 $\times \times \times \times \times \times \times \otimes \otimes$ $(2) \times \times \times \times \times \times \otimes \otimes$ $(3) \times \times \times \times \otimes \otimes$ $(4) \times \times \times \otimes \otimes$ $(5) \times \times \otimes \otimes$ $(6) \times \otimes \otimes$ $(7) \otimes \otimes$

Classical QZ as a special case

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ XX

 \times \times \times \times \times \times \times \times

×

В

,

Classical QZ as a special case

 \times \times \times \times \times \times \times \times $\bigoplus \times \times \times \times \times \times \times$ \times \times \times \times \times \times \times \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ XX ,

В

Classical QZ as a special case

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $\oplus \times \times \times \times \times \times$ \times \times \times \times \times \times $\times \times \times \times \times$ $\times \times \times \times$ $\times \times \times$ × × ,

 \times

B

Definition: Properness.

The Hessenberg pair (A, B) is called *proper* if:

Theorem. (C.-Meerbergen-Vandebril, 2019a)

If (A, B) is a proper Hessenberg pair with poles $(\xi_1, \ldots, \xi_{n-1})$ distinct from the eigenvalues. Then for $i = 1, \ldots, n$:

$$\mathcal{K}_i^{\mathsf{rat}}(AB^{-1}, \boldsymbol{e}_1, (\xi_1, \ldots, \xi_{i-1})) = \mathcal{E}_i := \mathcal{R}(\boldsymbol{e}_1, \ldots, \boldsymbol{e}_i),$$

while for i = 1, ..., n - 1:

 $\mathcal{K}_i^{\mathsf{rat}}(B^{-1}A, \boldsymbol{e}_1, (\xi_2, \ldots, \xi_i)) = \mathcal{E}_i.$

Implicit Q Theorem. (C.-Meerbergen-Vandebril, 2019a)

Given a regular matrix pair (A, B). The matrices Q and Z that transform it to proper Hessenberg form,

$$(\hat{A},\hat{B})=Q^*(A,B) Z,$$

are determined essentially unique if Qe_1 and the (order of the) poles are fixed.

Theoretical results

Rational accelerated subspace iteration. (C.-Meerbergen-Vandebril, 2019a) A rational QZ step with shift $\varrho \notin \{\Lambda, \Xi\}$ on a proper Hessenberg pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n , all distinct from Λ , performs nested subspace iteration for $i = 1, \ldots, n-1$ accelerated by

$$Q\mathcal{E}_i = \mathcal{R}(\boldsymbol{q}_1, \dots, \boldsymbol{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$Z\mathcal{E}_i = \mathcal{R}(\boldsymbol{z}_1, \dots, \boldsymbol{z}_i) = (A - \xi_{i+1}B)^{-1}(A - \varrho B)\mathcal{E}_i.$$

followed by a change of basis.

 \rightarrow Subspace iteration with rational filter \rightarrow More modular (single swap) convergence theory: (C.-Mach-Vandebril-Watkins, 2019).

Exactness result (C., 2019)

Let (A, B) be a proper Hessenberg pencil with poles Ξ . Furthermore, let ρ be an eigenvalue of (A, B) which is distinct from Ξ . A rational QZ step, $Q^*(A, B)Z$, with shift ρ leads to a deflation in the last rows of $Q^*(A, B)Z$.

$\mathsf{Pole}\ \mathsf{swapping} =$

• Motivated by implicit Q theorems

 \Rightarrow iterates are uniquely determined by $m{q}_1=q(AB^{-1})m{e}_1$ and poles in pencil

- Nested subspace iteration with a change of basis accelerated by rational functions (shifts and poles)
- \rightarrow These results are based on a connection with rational Krylov subspaces

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

23

Motivation: make the rational QZ method competitive with state-of-the-art.

- Extension of the rational QZ method from Hessenberg to block Hessenberg pencils
- Shifts and poles of larger multiplicity
- Real-valued generalized eigenproblems in real arithmetic
- Swapping 2×2 blocks: Iterative refinement via Newton steps (C.-Mastronardi-Vandebril-Van Dooren, 2019).

Aggressive early deflation (Braman-Byers-Mathias, 2002)

Numerical experiments with libRQZ v0.1

Conclusion

1. We have presented a novel interpretation of QR-type methods:

bulge chasing \leftrightarrow pole swapping.

- 2. This results in a more general class of algorithms.
- 3. Convergence is determined by rational functions instead of polynomials.
- 4. Faster and more flexible eigensolvers.

- Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the matrix eigenvalue problem. *Quart. Appl. Math.*, 9:17–29.
- Berljafa, M., and Güttel, S. (2015). Generalized rational Krylov decompositions with an application to rational approximation. *SIMAX*, 36(2):894–916.
- Braman, K., Byers R., and Mathias, R. (2002) The multishift QR algorithm. Part II: aggressive early deflation. *SIMAX*, 23(4):948–973.
- Camps, D., Meerbergen, K., and Vandebril, R. (2019). A rational QZ method. SIMAX Accepted.
- Camps, D., Meerbergen, K., and Vandebril, R. (2019). A multishift, multipole rational QZ method with aggressive early deflation. Submitted.
- Camps, D., Mach, T., Vandebril, R., and Watkins, D. S. (2019). On pole-swapping algorithms for the eigenvalue problem. Submitted.
- Camps, D. (2019). Pole swapping methods for the eigenvalue problem rational QR algorithms. PhD thesis.
- Camps, D., Mastronardi, N., Vandebril, R., and Van Dooren P. (2019). Swapping 2 × 2 blocks in the Schur and generalized Schur form. *JCAM* Available online.

- Elsner, L., and Watkins, D. S. Convergence of algorithms of decomposition type for the eigenvalue problem. *Lin. Alg. Appl.*, 143:19–47.
- Francis, J. G. F. (1961-62) The QR transformation, a unitary analogue to the LR transformation Part 1 and 2 *The Computer Journal.*
- Kågström, B. (1993) A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair (A, B). In *Linear Algebra for Large Scale and Real-Time Applications*.
- Moler, C. B., and Stewart, G. W. (1973) An algorithm for generalized matrix eigenvalue problems. *SIAM J. Numer. Anal.*, 10(2):241–256.
- Ruhe, A. (1998) Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. *SISC*, 19(5):1535–1551
- Van Dooren, P. (1981) A generalized eigenvalue approach for solving Riccati equations SISC, 2(2):121-135
- Watkins, D. S. (1993) Some perspectives on the eigenvalue problem. SIREV, 35:430-471.