

FunFact Daan Camps, Yu-Hang Tang Lawrence Berkeley National Laboratory, NVIDIA

Tensor Decomposition, Your Way

 $B = \frac{1}{2}$ and Applied Mathematics Science 1 and 1 10th International Congress on Industrial and Applied Mathematics

Tensors decompositions have many applications

A zoo of decompositions and algorithms

Algorithms

- Bidiagonalization
- Alternating Least-Squares
- CG

- …

- ADMM
- DMRG
- Gradient based

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear

Universe of all possible decompositions

FunFact: Instantaneous time-to-algorithm

- Analyze model
- Formulate and implement algorithm
- Validate results

Process of days/weeks/months/years Expert knowledge required

FunFact workflow:

- Write model as (nonlinear) tensor expression
- Factorize data and validate results

Process of minutes/hours Accessible for non-experts

Behind the scenes of FunFact

Frontend: a tensor algebra language through an embedded domain specific language (eDSL) that combines NumPy API and generalized Einstein notations

$$
\boldsymbol{c}_i = \boldsymbol{a}_{ij} \boldsymbol{b}_j \hspace{1cm} \boldsymbol{c}_i = \sum_j \boldsymbol{a}_{ij} \boldsymbol{b}_j
$$

Backend: modern NLA libraries that support autograd on GPUs

G PyTorch

TO GUERRA

 $\frac{1}{\sqrt{2}}$

!pip install funfact

import funfact as ff

install from PyPI and load package

```
a = ff.tensor('a', 50, 3)b = ff.tensor('b', 3, 20)i, j, k = ff.indices('i, j, k')
```
declare tensors and indices

 t srex = a[i, k] * b[k, j]

write tensor expression

Lazy evaluation: writing down a tensor expression does not trigger immediate

evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for

future use.

 $target = load_data(...)$

ff.factorize(target, tsrex)

factorize target data tensor into tensor expression

Let's talk about grammar!

- An elementwise function evaluation of a tensor expression yields a new tensor expression.
- Binary operations between two tensor expressions yields a new tensor expression.
- Unary operations on a tensor expression yields a new tensor expression.
- An index notation is by itself a tensor expression.
- A tensor is by itself a tensor expression.
- A literal value is by itself a tensor expression.

Rule Backus-Naur Form

Most common math routines in NumPy can be used as elementwise functions.

Valid binary operators are multiplication, division, addition, subtraction, exponentiation, Kronecker product, and matrix multiplication.

A tensor expression, regardless of its complexity, can be indexed by an index set whose size is consistent with its dimensionality. \blacksquare index_notation -> tsrex[indices]

 $f \rightarrow abs$ | exp | log sin | cos | tan | asin | acos | atan | atan2 | sinh | cosh | tanh ... ** | & | @

Index notation and index modifiers

A valid index set consists of zero or more index variables, each of which can be optionally decorated with the \sim and $*$ modifier.

Rule Backus-Naur Form

- repeated indices in a tensor expression are normally contracted (**einsum**)
- [~]modifier indicates explicit **non-reducing/non-contracting index**
- * modifier indicates a **Kronecker index**

Example: Khatri-Rao product

$$
C=A\odot B:=[a_1\otimes b_1\ a_2\otimes b_2\ \cdots\ a_n\otimes b_n],
$$

import funfact as ff a = ff.tensor('a', 5, 2) b = ff.tensor('b', 3, 2) c = ff.tensor('c', 5, 4) i, j = ff.indices('i, j') # (standard) Khatri-Rao product of a and b with shape 15 x 2 : tsrex = a[[*i, ~j]] * b[i, j] # row-wise Khatri-Rao product of a and c with shape 5 x 8 : tsrex = a[[~i, *j]] * c[i, j]

Complex decompositions in a concise expression

Example: Image compression through nonlinear factorization

SVD gives the best rank-r approximation

 Ω

Example: Image compression through nonlinear factorization

FunFact finds the same solution

$low_rank = u[i, r] * v[j, r]$

Example: Image compression through nonlinear factorization

BERKELEY LAB Office of Science ¹ **- 12** rbf = ff.exp(-(u[i, ~k] - v[j, ~k])**2) * a[k] + b[[]] **arXiv:2106.02018 Original 24 ranks MSE loss: 9.18e-5 12 ranks MSE loss: 1.54e-3 6 ranks MSE loss: 4.22e-3** Linear combination of RBFs:

Nonlinear models achieve lower loss for same data complexity

SVD

RBF

At least 10% reduction in MSE for same storage cost!

Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain condition(s):

4

```
from funfact.conditions import (
       UpperTriangular, Unitary, Diagonal, NonNegative
  \mathcal{L}The condition is added to a tensor as a preference:
```

```
T = funfact.tensor(...,
          prefer=Unitary(
              weight=1.0,
               elementwise='mse', #'l1'
              reduction='mean' #'sum'
\qquad \qquad\mathcal{L}
```
And included in the optimization as a **penalty:**

ff.factorize(target, tsrex, penalty_weight=1.0)

Example: Quantum circuit compilation as a tensor decomposition

- Quantum circuit synthesis or compilation is the task of finding a quantum gate representation for a given unitary operator
- This problem can be formulated as a tensor decomposition problem

Quantum Circuit Synthesis of Fourier Transform

Quantum Fourier Transform DOI: 10.1002/nla.2331

- $O((\log N)^2)$ circuit is known

6

- Might not correspond to hardware qubit topology

Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity

7

def two_qubit_gate(i: int, n: int): $G = ff.tensor(4, 4, prefer=cond.Unitary)$ return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

Optimizing the circuit as a tensor expression

Optimizing the circuit as a tensor expression

loss: 0.009713371542746886

penalty: 8.032669575186446e-05

9

Unitariness of factor matrices: $|U^{\dagger}U|$

- FunFact is a rich and flexible language for (non-)linear tensor algebra expressions
- FunFact can solve the inverse problem thanks to modern NLA backends such as JAX and PyTorch
- Dramatically reduced time-to-algorithm for new tensor factorization models

Released V1.0 under BSD license

Find out more at:

- **● [funfact.readthedocs.io](https://funfact.readthedocs.io/en/latest/)**
- **● github.com/yhtang/FunFact/**
- **● pypi.org/project/funfact/**

Funding acknowledgment: LDRD No. DE-AC02-05CH11231

slides available at: <https://tinyurl.com/funfact-iciam>

 Ω