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Tensors decompositions have many applications
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A zoo of decompositions and algorithms
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- Bidiagonalization

- Alternating Least-Squares
- CG

- ADMM

- DMRG

- Gradient based
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Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear

Universe of all possible decompositions
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FunFact: Instantaneous time-to-algorithm
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Traditional workflow: u FunFact workflow: F
Analyze model - Write model as (nonlinear) tensor
Formulate and implement expression
algorithm - Factorize data and validate results

Validate results

Process of days/weeks/months/years
Expert knowledge required
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Behind the scenes of FunFact

Frontend: atensor algebralanguage through an embedded
domain specific language (eDSL) that combines
NumPy APl and generalized Einstein notations

C, = aijbj C, = Zj az-jb

Backend: modern NLA libraries that support autograd on GPUs

Algorithm: stochastic gradient descent with multi-replica ¢35 45— =
learning U D U

DEPARTMENT OF Ofﬁce O'F

- | BERKELEY LAB ENERGY | scienec



Example Workflow: Hello World!

Ipip install funfact
import funfact as ff install from PyP| and load package

ff.tensor('a', 50, 3)
'ff.tensor('bi, 3, 2@).
o Jo I8 = Fodmestees( L, J, <) declare tensors and indices

o = el Rl 9 write tensor expression
Lazy evaluation: writing down a tensor expression does not trigger immediate
evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for

future use.

target = load_data(...) factorize target data tensor into tensor
ff.factorize(target, tsrex) expreSSion
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Let’s talk about grammar!

Rule Backus-Naur Form
e Anelementwise function evaluation of a tensor expression yields a new tensor
egpressuan. ) ) ) tsrex -> f(tsrex)
e Binary operations between two tensor expressions yields a new tensor tsrex binary_operator tsrex |
expresskan. gnary_operator tsrex |
. . . . index_notation |
Unary operations on a tensor expression yields a new tensor expression. EEr |
An index notation is by itself a tensor expression. literal

A tensor is by itself a tensor expression.
A literal value is by itself a tensor expression.

Most common math routines in NumPy can be used as elementwise functions.

Valid binary operators are multiplication, division, addition, subtraction,

T . - . binary_operator -> *
exponentiation, Kronecker product, and matrix multiplication.

| /
** | &

A tensor expression, regardless of its complexity, can be indexed by an index set
whose size is consistent with its dimensionality. index_notation -> tsrex[indices]
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Index notation and index modifiers

Rule Backus-Naur Form
indices -> |
A valid index set consists of zero or more index variables, each of which can be index |
optionally decorated with the ~ and * modifier. indices,

indices,
indices,

e repeatedindicesin atensor expression are normally contracted (einsum)
e -~ modifier indicates explicit non-reducing/non-contracting index
e + modifier indicates a Kronecker index

. import funfact as ff
Example: Khatri-Rao product a = ff.tensor('a’, 5,
b ff.tensor('b', 3,
c ff.tensor('c', 5,
i, j = ff.indices('1,

C=A0B:=[a1®b1as®by -+ a, ® by, i)

tsrex = a[[*i, ~j]] * b[i, j]

tsrex = a[[~i, *j]] * c[i, j]
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Complex decompositions in a concise expression

Tucker mposition
ucker decompositio 1 e
tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3] "" z"“xx,
4 - )
Tensor-rank decomposition
il /jCQ CR
tensor_rank = (a[i, ~r] * b[j, r]) * clk, r] 5 HQHQ ﬂ/:
J
\

Tensor train decomposition

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *
G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]
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Example: Image compression through nonlinear factorization

SVD gives the best rank-r approximation

M=UXV" M=~ UX\V’
U, S, V = np.linalg.svd(img)

[ Original \ [ 24 ranks \ [ 12 ranks \ f 6 ranks \

\ J WSE loss: 4'319'U WSE loss: 1.95e-3j \MSE loss: 4.59e-y
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Example: Image compression through nonlinear factorization

FunFact finds the same solution

low_rank = u[i, r] * v[j,

f 6 ranks \

\MSE loss: 4.31e-4 _/ \MSE loss: 1.95¢-3_/ \_MSE loss: 4.59-3 /
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Example: Image compression through nonlinear factorization

rbf = ff.exp(-(uli, ~k] - v[j, ~k])**2) * a[k] + b[[]]

Linear combination of RBFs: A;ij = exp (_ (uﬁé —Yz

f Original

~

24 ranks

-~

\MSE loss: 9.18e

~

f 12 ranks

5/

~

WSE loss: 1.54e-3/

arXiv:2106.02018

)z)ak—l—b

f 6 ranks

\MSE loss: 4.22e-3_/

~
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Nonlinear models achieve lower loss for same data complexity

RBF

WSE loss: 4.31e-4j
/ 24 ranks \

WSE loss: 9.18e-5j

WSE loss: 1.95e-3j
/ 12 ranks \

WSE loss: 1.54e-3j

\MSE loss: 4.59e-y
/ 6 ranks \

s

At least 10% reduction
in MSE for same
storage cost!

WSE loss: 4.229-3/
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Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain
condition(s):

from funfact.conditions import (

UpperTriangular, Unitary, Diagonal, NonNegative

)
The condition is added to a tensor as a preference:

T = funfact.tensor(...,
prefer=Unitary (
weight=1.0,
elementwise="mse",
reduction="mean'

And included in the optimization as a penalty:

ff.factorize(target, tsrex, penalty_weight=1.0)
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Example: Quantum circuit compilation as a tensor

decomposition

Quantum circuit synthesis or compilation is the task of finding a
quantum gate representation for a given unitary operator
This problem can be formulated as a tensor decomposition problem

|%0) - =
|11) iy B [
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1) ipat ingt

U.S. DEPARTMENT OF O.H.'ice O'F

crerr>| | BERKELEY LAB ENERGY | scence



Quantum Circuit Synthesis of Fourier Transform

Quantum Fourier Transform DO0I:10.1002/nla.2331
O( (log N)?) circuit is known

g0 JTHH P(—1.5708)H P(—0.7854)
¢ : HH P(=1.5708)
g2 ® l H pe

- Might not correspond to hardware qubit topology
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Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity

3‘1’ 1y °e) U@

. UM U@3) U (%)

def two_qubit_gate(i: int, n: int):
G = ff.tensor(4, 4, prefer=cond.Unitary)
return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1,
two_qubit_gate(0,
two_qubit_gate(1,
two_qubit_gate(0,
two_qubit_gate(1,
two_qubit_gate(0,
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Optimizing the circuit as a tensor expression

Re(QFT) Im(QFT)

circuit_fac = ff.factorize( 01 2 3 456 7 012 3 456 7

circuit3, QFT_matrix3,

max_steps=1000,

tol=1e-3,

1r=7e-2,

vec_size=32,

loss=MSE_1loss,

dtype=ab.complex64,

checkpoint_freq=40,

penalty_weight=2.0

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

28% I | 280/1000 [00:02<00:07, 97.39it/s] Re(Circuit) Im(Circuit)
01234586 7 0123 45867
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Optimizing the circuit as a tensor expression

loss: 0.009713371542746886
penalty: 8.032669575186446e-05

Unitariness of factor matrices: |UTU|

factor 0 factor 1 factor 2 factor 3 factor 4 factor 5
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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Conclusion f

FunFact is a rich and flexible language for (non-)linear

tensor algebra expressions
FunFact can solve the inverse problem thanks to modern NLA backends such as

JAX and PyTorch
Dramatically reduced time-to-algorithm for new tensor factorization models

Released V1.0 under BSD license

Find out more at:

Funding acknowledgment:

o funfact.readthedocs.io LDRD No. DE-AC02-05CH11231

e github.com/yhtang/FunFact/
e pypi.org/project/funfact/

slides available at: https://tinyurl.com/funfact-iciam
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