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Tensors decompositions have many applications

Multiway data

Image and video compression

Unsupervised learning: Blind source separation

Quantum physics
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Decompositions

A zoo of decompositions and algorithms
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Algorithms
- Bidiagonalization
- Alternating Least-Squares
- CG
- ADMM
- DMRG
- Gradient based
- …

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear
Universe of all possible decompositions
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FunFact: Instantaneous time-to-algorithm
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Process of days/weeks/months/years
Expert knowledge required

FunFact workflow:
- Write model as (nonlinear) tensor 

expression
- Factorize data and validate results

Process of minutes/hours
Accessible for non-experts

Traditional workflow:
- Analyze model
- Formulate and implement 

algorithm
- Validate results
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Behind the scenes of FunFact

a tensor algebra language through an embedded 
domain specific language (eDSL) that combines 
NumPy API and generalized Einstein notations
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Frontend:

Backend: modern NLA libraries that support autograd on GPUs

Algorithm: stochastic gradient descent with multi-replica 
learning



BERKELEY LAB Office of
Science6

Example Workflow: Hello World!

!pip install funfact

import funfact as ff

a = ff.tensor('a', 50, 3)

b = ff.tensor('b', 3, 20)
i, j, k = ff.indices('i, j, k')
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install from PyPI and load package

declare tensors and indices
tsrex = a[i, k] * b[k, j]

target = load_data(...)

ff.factorize(target, tsrex)

write tensor expression

factorize target data tensor into tensor 
expression

Lazy evaluation: writing down a tensor expression does not trigger immediate 
evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for 
future use.
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● An elementwise function evaluation of a tensor expression yields a new tensor 
expression.

● Binary operations between two tensor expressions yields a new tensor 
expression.

● Unary operations on a tensor expression yields a new tensor expression.
● An index notation is by itself a tensor expression.
● A tensor is by itself a tensor expression.
● A literal value is by itself a tensor expression.

Let’s talk about grammar!
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tsrex -> f(tsrex) |
         tsrex binary_operator tsrex |
         unary_operator tsrex |
         index_notation |
         tensor |
         literal

Rule Backus-Naur Form

A tensor expression, regardless of its complexity, can be indexed by an index set 
whose size is consistent with its dimensionality. index_notation -> tsrex[indices]

Most common math routines in NumPy can be used as elementwise functions.

f -> abs   | exp   | log   |
     sin   | cos   | tan   |
     asin  | acos  | atan  | atan2  |
     sinh  | cosh  | tanh  |
     ...

Valid binary operators are multiplication, division, addition, subtraction, 
exponentiation, Kronecker product, and matrix multiplication.

binary_operator -> *  | /  | +  | -  |
                   ** | &  | @
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Index notation and index modifiers
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A valid index set consists of zero or more index variables, each of which can be 
optionally decorated with the ~ and * modifier.

indices -> |
           index |
           indices,  index |
           indices, ~index |
           indices, *index

x

Rule Backus-Naur Form

● repeated indices in a tensor expression are normally contracted (einsum)
● ~ modifier indicates explicit non-reducing/non-contracting index
● * modifier indicates a Kronecker index

import funfact as ff
a = ff.tensor('a', 5, 2)
b = ff.tensor('b', 3, 2)
c = ff.tensor('c', 5, 4)
i, j = ff.indices('i, j')
# (standard) Khatri-Rao product of a and b with shape 15 x 2 :
tsrex = a[[*i, ~j]] * b[i, j]
# row-wise Khatri-Rao product of a and c with shape 5 x 8 :
tsrex = a[[~i, *j]] * c[i, j]

Example: Khatri-Rao product
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Complex decompositions in a concise expression
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tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3]

tensor_rank = (a[i, ~r] * b[j, r]) * c[k, r]

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *

               G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]

Tucker decomposition

Tensor-rank decomposition

Tensor train decomposition
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Example: Image compression through nonlinear factorization

U, S, V = np.linalg.svd(img)
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SVD gives the best rank-r approximation

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3
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low_rank = u[i, r] * v[j, r]

FunFact finds the same solution

Example: Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3
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rbf = ff.exp(-(u[i, ~k] - v[j, ~k])**2) * a[k] + b[[]] arXiv:2106.02018

Example: Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

Linear combination of RBFs:
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Nonlinear models achieve lower loss for same data complexity

24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

SVD

RBF

At least 10% reduction 
in MSE for same 

storage cost!
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Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain 
condition(s):

- 14 -

from funfact.conditions import (

    UpperTriangular, Unitary, Diagonal, NonNegative

)

T = funfact.tensor(...,
        prefer=Unitary(
            weight=1.0,
            elementwise='mse', #'l1'
            reduction='mean'   #'sum'
        )
)

The condition is added to a tensor as a preference:

And included in the optimization as a penalty:
ff.factorize(target, tsrex, penalty_weight=1.0)
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Example: Quantum circuit compilation as a tensor
decomposition
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- Quantum circuit synthesis or compilation is the task of finding a 
quantum gate representation for a given unitary operator

- This problem can be formulated as a tensor decomposition problem
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Quantum Circuit Synthesis of Fourier Transform
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Quantum Fourier Transform DOI: 10.1002/nla.2331

- O( (log N)2) circuit is known

- Might not correspond to hardware qubit topology
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Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity
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def two_qubit_gate(i: int, n: int):
    G = ff.tensor(4, 4, prefer=cond.Unitary)
    return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3) @ \
           two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3) @ \
           two_qubit_gate(1, 3) @ \
           two_qubit_gate(0, 3)
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Optimizing the circuit as a tensor expression
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circuit_fac = ff.factorize(
    circuit3, QFT_matrix3,
    max_steps=1000,
    tol=1e-3,
    lr=7e-2,
    vec_size=32,
    loss=MSE_loss,
    dtype=ab.complex64,
    checkpoint_freq=40,
    penalty_weight=2.0
)

28%|██▊       | 280/1000 [00:02<00:07, 97.39it/s]
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Optimizing the circuit as a tensor expression
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loss: 0.009713371542746886

penalty: 8.032669575186446e-05
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Conclusion

- FunFact is a rich and flexible language for (non-)linear 
tensor algebra expressions

- FunFact can solve the inverse problem thanks to modern NLA backends such as 
JAX and PyTorch

- Dramatically reduced time-to-algorithm for new tensor factorization models
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Released V1.0 under BSD license
Find out more at:

● funfact.readthedocs.io 
● github.com/yhtang/FunFact/ 
● pypi.org/project/funfact/ 

slides available at: https://tinyurl.com/funfact-iciam 

https://funfact.readthedocs.io/en/latest/
https://github.com/yhtang/FunFact/
https://pypi.org/project/funfact/
https://tinyurl.com/funfact-iciam

