
BERKELEY LAB Office of
Science1

FunFact Daan Camps, Yu-Hang Tang
Lawrence Berkeley National Laboratory,

NVIDIA

10th International Congress on
Industrial and Applied Mathematics

Tensor Decomposition, Your Way

BERKELEY LAB Office of
Science2

Tensors decompositions have many applications

Multiway data

Image and video compression

Unsupervised learning: Blind source separation

Quantum physics

BERKELEY LAB Office of
Science3

Decompositions

A zoo of decompositions and algorithms

- 3 -

Algorithms
- Bidiagonalization
- Alternating Least-Squares
- CG
- ADMM
- DMRG
- Gradient based
- …

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear
Universe of all possible decompositions

BERKELEY LAB Office of
Science4

FunFact: Instantaneous time-to-algorithm

- 4 -

Process of days/weeks/months/years
Expert knowledge required

FunFact workflow:
- Write model as (nonlinear) tensor

expression
- Factorize data and validate results

Process of minutes/hours
Accessible for non-experts

Traditional workflow:
- Analyze model
- Formulate and implement

algorithm
- Validate results

BERKELEY LAB Office of
Science5

Behind the scenes of FunFact

a tensor algebra language through an embedded
domain specific language (eDSL) that combines
NumPy API and generalized Einstein notations

- 5 -

Frontend:

Backend: modern NLA libraries that support autograd on GPUs

Algorithm: stochastic gradient descent with multi-replica
learning

BERKELEY LAB Office of
Science6

Example Workflow: Hello World!

!pip install funfact

import funfact as ff

a = ff.tensor('a', 50, 3)

b = ff.tensor('b', 3, 20)
i, j, k = ff.indices('i, j, k')

- 6 -

install from PyPI and load package

declare tensors and indices
tsrex = a[i, k] * b[k, j]

target = load_data(...)

ff.factorize(target, tsrex)

write tensor expression

factorize target data tensor into tensor
expression

Lazy evaluation: writing down a tensor expression does not trigger immediate
evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for
future use.

BERKELEY LAB Office of
Science7

● An elementwise function evaluation of a tensor expression yields a new tensor
expression.

● Binary operations between two tensor expressions yields a new tensor
expression.

● Unary operations on a tensor expression yields a new tensor expression.
● An index notation is by itself a tensor expression.
● A tensor is by itself a tensor expression.
● A literal value is by itself a tensor expression.

Let’s talk about grammar!

- 7 -

tsrex -> f(tsrex) |
 tsrex binary_operator tsrex |
 unary_operator tsrex |
 index_notation |
 tensor |
 literal

Rule Backus-Naur Form

A tensor expression, regardless of its complexity, can be indexed by an index set
whose size is consistent with its dimensionality. index_notation -> tsrex[indices]

Most common math routines in NumPy can be used as elementwise functions.

f -> abs | exp | log |
 sin | cos | tan |
 asin | acos | atan | atan2 |
 sinh | cosh | tanh |
 ...

Valid binary operators are multiplication, division, addition, subtraction,
exponentiation, Kronecker product, and matrix multiplication.

binary_operator -> * | / | + | - |
 ** | & | @

BERKELEY LAB Office of
Science8

Index notation and index modifiers

- 8 -

A valid index set consists of zero or more index variables, each of which can be
optionally decorated with the ~ and * modifier.

indices -> |
 index |
 indices, index |
 indices, ~index |
 indices, *index

x

Rule Backus-Naur Form

● repeated indices in a tensor expression are normally contracted (einsum)
● ~ modifier indicates explicit non-reducing/non-contracting index
● * modifier indicates a Kronecker index

import funfact as ff
a = ff.tensor('a', 5, 2)
b = ff.tensor('b', 3, 2)
c = ff.tensor('c', 5, 4)
i, j = ff.indices('i, j')
(standard) Khatri-Rao product of a and b with shape 15 x 2 :
tsrex = a[[*i, ~j]] * b[i, j]
row-wise Khatri-Rao product of a and c with shape 5 x 8 :
tsrex = a[[~i, *j]] * c[i, j]

Example: Khatri-Rao product

BERKELEY LAB Office of
Science9

Complex decompositions in a concise expression

- 9 -

tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3]

tensor_rank = (a[i, ~r] * b[j, r]) * c[k, r]

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *

 G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]

Tucker decomposition

Tensor-rank decomposition

Tensor train decomposition

BERKELEY LAB Office of
Science1

0

Example: Image compression through nonlinear factorization

U, S, V = np.linalg.svd(img)

- 10 -

SVD gives the best rank-r approximation

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

BERKELEY LAB Office of
Science1

1 - 11 -

low_rank = u[i, r] * v[j, r]

FunFact finds the same solution

Example: Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

BERKELEY LAB Office of
Science1

2 - 12 -

rbf = ff.exp(-(u[i, ~k] - v[j, ~k])**2) * a[k] + b[[]] arXiv:2106.02018

Example: Image compression through nonlinear factorization

Original 24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

Linear combination of RBFs:

BERKELEY LAB Office of
Science1

3 - 13 -

Nonlinear models achieve lower loss for same data complexity

24 ranks

MSE loss: 4.31e-4

12 ranks

MSE loss: 1.95e-3

6 ranks

MSE loss: 4.59e-3

24 ranks

MSE loss: 9.18e-5

12 ranks

MSE loss: 1.54e-3

6 ranks

MSE loss: 4.22e-3

SVD

RBF

At least 10% reduction
in MSE for same

storage cost!

BERKELEY LAB Office of
Science1

4

Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain
condition(s):

- 14 -

from funfact.conditions import (

 UpperTriangular, Unitary, Diagonal, NonNegative

)

T = funfact.tensor(...,
 prefer=Unitary(
 weight=1.0,
 elementwise='mse', #'l1'
 reduction='mean' #'sum'
)
)

The condition is added to a tensor as a preference:

And included in the optimization as a penalty:
ff.factorize(target, tsrex, penalty_weight=1.0)

BERKELEY LAB Office of
Science1

5

Example: Quantum circuit compilation as a tensor
decomposition

- 15 -

- Quantum circuit synthesis or compilation is the task of finding a
quantum gate representation for a given unitary operator

- This problem can be formulated as a tensor decomposition problem

BERKELEY LAB Office of
Science1

6

Quantum Circuit Synthesis of Fourier Transform

- 16 -

Quantum Fourier Transform DOI: 10.1002/nla.2331

- O((log N)2) circuit is known

- Might not correspond to hardware qubit topology

BERKELEY LAB Office of
Science1

7

Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity

- 17 -

def two_qubit_gate(i: int, n: int):
 G = ff.tensor(4, 4, prefer=cond.Unitary)
 return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3) @ \
 two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3) @ \
 two_qubit_gate(1, 3) @ \
 two_qubit_gate(0, 3)

BERKELEY LAB Office of
Science1

8

Optimizing the circuit as a tensor expression

- 18 -

circuit_fac = ff.factorize(
 circuit3, QFT_matrix3,
 max_steps=1000,
 tol=1e-3,
 lr=7e-2,
 vec_size=32,
 loss=MSE_loss,
 dtype=ab.complex64,
 checkpoint_freq=40,
 penalty_weight=2.0
)

28%|██▊ | 280/1000 [00:02<00:07, 97.39it/s]

BERKELEY LAB Office of
Science1

9

Optimizing the circuit as a tensor expression

- 19 -

loss: 0.009713371542746886

penalty: 8.032669575186446e-05

BERKELEY LAB Office of
Science2

0

Funding acknowledgment:
LDRD No. DE-AC02-05CH11231

Conclusion

- FunFact is a rich and flexible language for (non-)linear
tensor algebra expressions

- FunFact can solve the inverse problem thanks to modern NLA backends such as
JAX and PyTorch

- Dramatically reduced time-to-algorithm for new tensor factorization models

- 20 -

Released V1.0 under BSD license
Find out more at:

● funfact.readthedocs.io
● github.com/yhtang/FunFact/
● pypi.org/project/funfact/

slides available at: https://tinyurl.com/funfact-iciam

https://funfact.readthedocs.io/en/latest/
https://github.com/yhtang/FunFact/
https://pypi.org/project/funfact/
https://tinyurl.com/funfact-iciam

