FunFact

Daan Camps, Yu-Hang Tang Lawrence Berkeley National Laboratory, NVIDIA

Tensor Decomposition, Your Way

10th International Congress on Industrial and Applied Mathematics

Tensors decompositions have many applications

BERKELEY LAB

Office of

Science

2

A zoo of decompositions and algorithms

LAB

Algorithms

- Bidiagonalization
- Alternating Least-Squares
- CG
- ADMM
- DMRG

. . .

- Gradient based

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear

Universe of all possible decompositions

FunFact: Instantaneous time-to-algorithm

- Analyze model
- Formulate and implement algorithm
- Validate results

Process of days/weeks/months/years Expert knowledge required

FunFact workflow:

- Write model as (nonlinear) tensor expression
- Factorize data and validate results

Process of minutes/hours Accessible for non-experts

Behind the scenes of FunFact

BERKELEY LAB

Frontend: a tensor algebra language through an embedded domain specific language (eDSL) that combines NumPy API and generalized Einstein notations

$$oldsymbol{c}_i = oldsymbol{a}_{ij}oldsymbol{b}_j$$
 $oldsymbol{c}_i = \sum_j oldsymbol{a}_{ij}oldsymbol{b}_j$

Backend: modern NLA libraries that support autograd on GPUs

O PyTorch

NumPy

!pip install funfact

import funfact as ff

install from PyPI and load package

```
a = ff.tensor('a', 50, 3)
b = ff.tensor('b', 3, 20)
i, j, k = ff.indices('i, j, k')
```

declare tensors and indices

tsrex = a[i, k] * b[k, j]

write tensor expression

Lazy evaluation: writing down a tensor expression does not trigger immediate

evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for

future use.

target = load_data(...)

ff.factorize(target, tsrex)

factorize target data tensor into tensor expression

Let's talk about grammar!

Rule

- An elementwise function evaluation of a tensor expression yields a new tensor expression.
- Binary operations between two tensor expressions yields a new tensor expression.
- Unary operations on a tensor expression yields a new tensor expression.
- An index notation is by itself a tensor expression.
- A tensor is by itself a tensor expression.

ERKELEY LAB

A literal value is by itself a tensor expression.

Most common math routines in NumPy can be used as elementwise functions.

Valid binary operators are multiplication, division, addition, subtraction, exponentiation, Kronecker product, and matrix multiplication.

A tensor expression, regardless of its complexity, can be indexed by an index set whose size is consistent with its dimensionality.

Backus-Naur Form

f ->	abs sin asin sinh 	exp cos acos cosh	log tan atan tanh	 atan2
bina	ry_opera	tor -> * *	* / ** &	+ - @
inde	x_notati	on -> ts	srex[ind:	ices]

Index notation and index modifiers

Rule

A valid index set consists of zero or more index variables, each of which can be optionally decorated with the ~ and * modifier.

Backus-Naur Form

indices ->	1			
	index			
	indices,	index	1	
	indices,	~index	1	
	indices,	*index		

- repeated indices in a tensor expression are normally contracted (**einsum**)
- ~ modifier indicates explicit **non-reducing/non-contracting index**
- * modifier indicates a Kronecker index

Example: Khatri-Rao product

$$C=A\odot B:=[a_1\otimes b_1\ a_2\otimes b_2\ \cdots\ a_n\otimes b_n],$$

```
import funfact as ff
a = ff.tensor('a', 5, 2)
b = ff.tensor('b', 3, 2)
c = ff.tensor('c', 5, 4)
i, j = ff.indices('i, j')
# (standard) Khatri-Rao product of a and b with shape 15 x 2 :
tsrex = a[[*i, ~j]] * b[i, j]
# row-wise Khatri-Rao product of a and c with shape 5 x 8 :
tsrex = a[[~i, *j]] * c[i, j]
```


Complex decompositions in a concise expression

Science

Example: Image compression through nonlinear factorization

SVD gives the best rank-r approximation

0

Example: Image compression through nonlinear factorization

FunFact finds the same solution

$low_rank = u[i, r] * v[j, r]$

Example: Image compression through nonlinear factorization

ВĿ

$$rbf = ff \cdot exp(-(u[i, +k] - v[j, +k]) * a[k] + b[[1]$$
 arXiv:2106.02018
arXiv:2106.02018
arXiv:2106.02018

$$fig \approx exp\left(-\left(u_{i\bar{k}} - v_{j\bar{k}}\right)^{2}\right)a_{k} + b$$

$$(if a = 1)$$

$$(if a =$$

2

Science

Nonlinear models achieve lower loss for same data complexity

SVD

RBF

At least 10% reduction in MSE for same storage cost!

U.S. DEPARTMENT OF

Office of

Science

Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain condition(s):

from funfact.conditions import (
 UpperTriangular, Unitary, Diagonal, NonNegative
)
The condition is added to a tensor as a preference:

```
T = funfact.tensor(...,
    prefer=Unitary(
        weight=1.0,
        elementwise='mse', #'l1'
        reduction='mean' #'sum'
    )
)
```

And included in the optimization as a **penalty:**

ff.factorize(target, tsrex, penalty_weight=1.0)

Example: Quantum circuit compilation as a tensor decomposition

- Quantum circuit synthesis or compilation is the task of finding a quantum gate representation for a given unitary operator
- This problem can be formulated as a tensor decomposition problem

Quantum Circuit Synthesis of Fourier Transform

Quantum Fourier Transform DOI: 10.1002/nla.2331

- O((log N)²) circuit is known

6

- Might not correspond to hardware qubit topology

Nearest-Neighbor Connectivity

_

The simplest topology is nearest-neighbor connectivity

def two_qubit_gate(i: int, n: int): G = ff.tensor(4, 4, prefer=cond.Unitary) return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

BERKELEY LAB

Optimizing the circuit as a tensor expression

Optimizing the circuit as a tensor expression

loss: 0.009713371542746886

penalty: 8.032669575186446e-05

Unitariness of factor matrices: $|U^{\dagger}U|$

- FunFact is a rich and flexible language for (non-)linear tensor algebra expressions
- FunFact can solve the inverse problem thanks to modern NLA backends such as JAX and PyTorch
- Dramatically reduced time-to-algorithm for new tensor factorization models

Released V1.0 under BSD license

Find out more at:

- <u>funfact.readthedocs.io</u>
- github.com/yhtang/FunFact/
- pypi.org/project/funfact/

Funding acknowledgment: LDRD No. DE-AC02-05CH11231

slides available at: <u>https://tinyurl.com/funfact-iciam</u>

2 0