FunFact { Daan Camps, Yu-Hang Tang

Lawrence Berkeley National Laboratory,
(NAVA|BIVAY

Tensor Decomposition, Your Way

10th International Coﬁgress on
Industrial and Applied Mathematics

Tensors decompositions have many applications

(\ [
T
o mﬁ' et "'

02
Fa 4 P
c4 | iy
P4
F2 A A A Ay et s A s MO PP Vi
Cz
H N e NS s
FP1 "

M i
Scalar Vector Matrix Tensor i A mf‘w,wmn ﬂVTWUWlW M“'"\“m

s AL AN S ‘UM\‘! I \'" 4\ ‘H”‘\
o1
. F3 WM* w“ " ﬂ " ﬂ
Multiway data bt ,,,m.i.w..xwh.

T2
m Y 'v M'W"ﬂﬂ““
42 43 44 45 46 47 48 49 50 52
time (s)

wnsupervised learning: Blind source separatiory

4)

tensor quantum state

—o- — — |¥)

\ Quantum physics J

DEPARTMENT OF O-H-'Ice O.F

\Image and video compressioy

crerr>| | BERKELEY LAB @) ENERGY | sciene

A zoo of decompositions and algorithms

/ Decompositions \

M=U £

'
C1 Co CR
/ o
X ~ H b1 + H b2 + —+ bR
ap az aR
— Ns
B x /5%,
|~ A/ :
N, ~ N| S X
| Rl
N. : R
N R X ’
Matrix Product State / PEPS S
Tensor Train Ny| ™2

or Network /
H ierare ch cal Tucker

\ B ER

/ Algorithms \

- Bidiagonalization

- Alternating Least-Squares
- CG

- ADMM

- DMRG

- Gradient based

_/

Every decomposition requires specialized algorithms

All impose linear contractions between factor tensors

Linear

Universe of all possible decompositions

U.S. DEPARTMENT OF

Office of

c-er>)f| BERKELEY LAB

N ERGY Science

FunFact: Instantaneous time-to-algorithm

) -o[ffis 1’)@

Traditional workflow: u FunFact workflow: F
Analyze model - Write model as (nonlinear) tensor
Formulate and implement expression
algorithm - Factorize data and validate results

Validate results

Process of days/weeks/months/years
Expert knowledge required

U.S. DEPARTMENT OF Ofﬁce O'F

- | BERKELEY LAB ENERGY | science

Behind the scenes of FunFact

Frontend: atensor algebralanguage through an embedded
domain specific language (eDSL) that combines
NumPy APl and generalized Einstein notations

C, = aijbj C, = Zj az-jb

Backend: modern NLA libraries that support autograd on GPUs

Algorithm: stochastic gradient descent with multi-replica ¢35 45— =
learning U D U

DEPARTMENT OF Ofﬁce O'F

- | BERKELEY LAB ENERGY | scienec

Example Workflow: Hello World!

Ipip install funfact
import funfact as ff install from PyP| and load package

ff.tensor('a', 50, 3)
'ff.tensor('bi, 3, 2@).
o Jo I8 = Fodmestees(L, J, <) declare tensors and indices

o = el Rl 9 write tensor expression
Lazy evaluation: writing down a tensor expression does not trigger immediate
evaluation. Rather, the abstract syntax tree (AST) of the calculation is saved for

future use.

target = load_data(...) factorize target data tensor into tensor
ff.factorize(target, tsrex) expreSSion

U.S. DEPARTMENT OF Ofﬁce O'F

crere?|f| BERKELEY LAB NERGY | scence

Let’s talk about grammar!

Rule Backus-Naur Form
e Anelementwise function evaluation of a tensor expression yields a new tensor
egpressuan.))) tsrex -> f(tsrex)
e Binary operations between two tensor expressions yields a new tensor tsrex binary_operator tsrex |
expresskan. gnary_operator tsrex |
. . . . index_notation |
Unary operations on a tensor expression yields a new tensor expression. EEr |
An index notation is by itself a tensor expression. literal

A tensor is by itself a tensor expression.
A literal value is by itself a tensor expression.

Most common math routines in NumPy can be used as elementwise functions.

Valid binary operators are multiplication, division, addition, subtraction,

T . - . binary_operator -> *
exponentiation, Kronecker product, and matrix multiplication.

| /
** | &

A tensor expression, regardless of its complexity, can be indexed by an index set
whose size is consistent with its dimensionality. index_notation -> tsrex[indices]

reee->]f) BERKELEY LAB ENERGY | ciece’

Index notation and index modifiers

Rule Backus-Naur Form
indices -> |
A valid index set consists of zero or more index variables, each of which can be index |
optionally decorated with the ~ and * modifier. indices,

indices,
indices,

e repeatedindicesin atensor expression are normally contracted (einsum)
e -~ modifier indicates explicit non-reducing/non-contracting index
e + modifier indicates a Kronecker index

. import funfact as ff
Example: Khatri-Rao product a = ff.tensor('a’, 5,
b ff.tensor('b', 3,
c ff.tensor('c', 5,
i, j = ff.indices('1,

C=A0B:=[a1®b1as®by -+ a, ® by, i)

tsrex = a[[*i, ~j]] * b[i, j]

tsrex = a[[~i, *j]] * c[i, j]

U.S. DEPARTMENT OF Ofﬁce O'F

crere?|f| BERKELEY LAB 0} ENERGY | science

Complex decompositions in a concise expression

Tucker mposition
ucker decompositio 1 e
tucker = Z[r1, r2, r3] * S1[r1, n1] * S2[r2, n2] * S3[r3, n3] "" z"“xx,
4 -)
Tensor-rank decomposition
il /jCQ CR
tensor_rank = (a[i, ~r] * b[j, r]) * clk, r] 5 HQHQ ﬂ/:
J
\

Tensor train decomposition

tensor_train = G1[i1, r1] * G2[i2, r1, r2] * G3[i3, r2, r3] *
G4[i4, r3, r4] * G5[i5, r4, r5] * G6[i6, r5]

c-er>)f| BERKELEY LAB

U.S. DEPARTMENT OF Ofﬁce O'F

EN ERGY Science

Example: Image compression through nonlinear factorization

SVD gives the best rank-r approximation

M=UXV" M=~ UX\V’
U, S, V = np.linalg.svd(img)

[Original \ [24 ranks \ [12 ranks \ f 6 ranks \

\ J WSE loss: 4'319'U WSE loss: 1.95e-3j \MSE loss: 4.59e-y

U.S. DEPARTMENT OF Ofﬁce O'F

crere?|f| BERKELEY LAB ENERGY | scence

Example: Image compression through nonlinear factorization

FunFact finds the same solution

low_rank = u[i, r] * v[j,

f 6 ranks \

\MSE loss: 4.31e-4 _/ \MSE loss: 1.95¢-3_/ _MSE loss: 4.59-3 /

U.S. DEPARTMENT OF Ofﬁce O'F

crere?|f| BERKELEY LAB ENERGY | scence

Example: Image compression through nonlinear factorization

rbf = ff.exp(-(uli, ~k] - v[j, ~k])**2) * a[k] + b[[]]

Linear combination of RBFs: A;ij = exp (_ (uﬁé —Yz

f Original

~

24 ranks

-~

\MSE loss: 9.18e

~

f 12 ranks

5/

~

WSE loss: 1.54e-3/

arXiv:2106.02018

)z)ak—l—b

f 6 ranks

\MSE loss: 4.22e-3_/

~

S. DEPARTMENT OF

Office of

c-er>)f| BERKELEY LAB

ENERGY

Science

Nonlinear models achieve lower loss for same data complexity

RBF

WSE loss: 4.31e-4j
/ 24 ranks \

WSE loss: 9.18e-5j

WSE loss: 1.95e-3j
/ 12 ranks \

WSE loss: 1.54e-3j

\MSE loss: 4.59e-y
/ 6 ranks \

s

At least 10% reduction
in MSE for same
storage cost!

WSE loss: 4.229-3/

S. DEPARTMENT OF O-Fﬁce O-F

c-er>)f| BERKELEY LAB

EN ERGY Science

Conditions and Penalties

In many applications, the tensors in a tensor expression must satisfy certain
condition(s):

from funfact.conditions import (

UpperTriangular, Unitary, Diagonal, NonNegative

)
The condition is added to a tensor as a preference:

T = funfact.tensor(...,
prefer=Unitary (
weight=1.0,
elementwise="mse",
reduction="mean'

And included in the optimization as a penalty:

ff.factorize(target, tsrex, penalty_weight=1.0)

U.S. DEPARTMENT OF O‘Fﬁce Of

2) ENERGY Science

c-er>)f| BERKELEY LAB

QN

Example: Quantum circuit compilation as a tensor

decomposition

Quantum circuit synthesis or compilation is the task of finding a
quantum gate representation for a given unitary operator
This problem can be formulated as a tensor decomposition problem

|%0) - =
|11) iy B [

ns) T H_I- 1]
1) ipat ingt

U.S. DEPARTMENT OF O.H.'ice O'F

crerr>| | BERKELEY LAB ENERGY | scence

Quantum Circuit Synthesis of Fourier Transform

Quantum Fourier Transform DO0I:10.1002/nla.2331
O((log N)?) circuit is known

g0 JTHH P(—1.5708)H P(—0.7854)
¢ : HH P(=1.5708)
g2 ® l H pe

- Might not correspond to hardware qubit topology

U.S. DEPARTMENT OF O.H.'ice O'F

crerr>| | BERKELEY LAB ENERGY | scence

Nearest-Neighbor Connectivity

- The simplest topology is nearest-neighbor connectivity

3‘1’ 1y °e) U@

. UM U@3) U (%)

def two_qubit_gate(i: int, n: int):
G = ff.tensor(4, 4, prefer=cond.Unitary)
return ff.eye(2**i) & G & ff.eye(2**(n-i-2))

circuit3 = two_qubit_gate(1,
two_qubit_gate(0,
two_qubit_gate(1,
two_qubit_gate(0,
two_qubit_gate(1,
two_qubit_gate(0,

.- f| BERKELEY LAB 2) ENERGY | sionee.

Optimizing the circuit as a tensor expression

Re(QFT) Im(QFT)

circuit_fac = ff.factorize(01 2 3 456 7 012 3 456 7

circuit3, QFT_matrix3,

max_steps=1000,

tol=1e-3,

1r=7e-2,

vec_size=32,

loss=MSE_1loss,

dtype=ab.complex64,

checkpoint_freq=40,

penalty_weight=2.0

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

28% I | 280/1000 [00:02<00:07, 97.39it/s] Re(Circuit) Im(Circuit)
01234586 7 0123 45867

N o W N H O
N OO AW N P O

U.S. DEPARTMENT OF Ofﬁce O'F

; EN ERGY Science

—_

c-er>)f| BERKELEY LAB

Optimizing the circuit as a tensor expression

loss: 0.009713371542746886
penalty: 8.032669575186446e-05

Unitariness of factor matrices: |UTU|

factor 0 factor 1 factor 2 factor 3 factor 4 factor 5
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

DEPARTMENT OF O'HICG O'F

crere?|f| BERKELEY LAB ! @) ENERGY | science

Conclusion f

FunFact is a rich and flexible language for (non-)linear

tensor algebra expressions
FunFact can solve the inverse problem thanks to modern NLA backends such as

JAX and PyTorch
Dramatically reduced time-to-algorithm for new tensor factorization models

Released V1.0 under BSD license

Find out more at:

Funding acknowledgment:

o funfact.readthedocs.io LDRD No. DE-AC02-05CH11231

e github.com/yhtang/FunFact/
e pypi.org/project/funfact/

slides available at: https://tinyurl.com/funfact-iciam

U.S. DEPARTMENT OF O.H.'ice O'F

crerr>| | BERKELEY LAB ENERGY | scence

https://funfact.readthedocs.io/en/latest/
https://github.com/yhtang/FunFact/
https://pypi.org/project/funfact/
https://tinyurl.com/funfact-iciam

