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Outline of the talk
FABLE: Quantum Circuits for Block-Encodings 
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Problem statement

Quantum Circuits for Block-Encodings
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Quantum computers perform unitary evolution
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U|ѱin> |ѱout>

|ѱout > = U |ѱin>

Unitary time evolution ⟿ state preparation

U|ѱin> |ѱout> !

|ѱout > = U |ѱin>

Measurements ⟿ sampling

• Unitary evolution has to be synthesized/compiled to lower level quantum circuit description:
• Generic (multi-)qubit gates > native gates > pulse sequence

• Many interesting problems are not unitary in nature



Block-encodings
A natural way to represent non-unitary transformation on quantum computers
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Prepares state proportional to 
A |ѱin> if ancilla qubits are in 

zero state

• Wide range of applications: random walks, Hamiltonian simulation, quantum linear algebra, quantum 
machine learning, open quantum systems, thermal states, …   



Background on block-encodings

• Implicitly used by:
– Szegedy (2004) in the context of quantized random walks
– Berry, Childs, Kothari (2015) for Hamiltonian simulation
– Childs, Kothari, Somma (2017) for quantum linear systems problem
– …

• Formalized by Gilyen, Su, Low, Wiebe (2018) as part of seminal quantum singular 
value transformation algorithmic framework

A brief history of many (implicit) use cases
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Not the focus of this talk



Black box query access through oracles

• Matrix access through one or more black box quantum query oracles
• For example: sparse matrices

A common assumption throughout the literature
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row index

column index

matrix values [binary bitstring encoding]

Not easy to come up with circuits for the query oracles



This talk
Direct encoding of the matrix data in a compact circuit
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U

A

circuit = fable(A)

FABLE:
• takes in N ⨉ N matrix A
• generates a circuit that consists of only H, Ry, CX, SWAP gates
• classical complexity O(N2 log N)
• worst-case circuit gate complexity O(N2) 

– often significantly better for structured problems (see examples)



Uniformly controlled rotations

Key component for building matrix query oracles
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Matrix query oracle
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n qubits n qubits 1 qubit 

Proof: see Theorem 1

If we have access to an oracle that provides the matrix data in a superposition:

The following circuit block encodes the matrix:



How to implement the oracle?

• Define the angles 

• Ry rotation

• Fully controlled rotation for every matrix element

For a real-valued 2⨉2 matrix
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|i>

|j>

O(N4) complexity in terms of CX, Ry gates



Uniformly controlled rotation

• Introduced by Möttönen et al. (2004)
• Two key elementary properties of Ry rotations:

An efficient circuit implementation for the matrix oracle 
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Computing the rotation angles
Structured linear system that can be solved efficiently
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Linear system relates the angles in the circuit to the angles in the uniformly controlled rotation 

This can be rewritten as

In general: → can be solved at O(N2 log N)



Overall FABLE circuit

• UCRy : sets the magnitude of the matrix entries

• UCRz : sets the phase of the matrix entries

Uniformly controlled rotation circuit as matrix oracle
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Real-valued matrix data Complex-valued matrix data

FABLE circuit for N ⨉ N matrix:

• O(N2 log N) classical cost to compute angles

• O(N2) CX, Ry gates

• 2 log N + 1 qubits



Compression theorem

Circuit compression for approximate block-encodings
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Compression of uniformly controlled rotations
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Compression theorem
Removing small angles leads to small perturbations on the block-encoding
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• Compression threshold 𝛿" ≥ 0
• Input matrix 𝐴 ∈ ℝ#×#

The error on the block-encoding is bounded from above by:

𝐴 − -𝐴 ! ≤ 𝑁%𝛿"

• Pessimistic bound
• Many problems of interest have lots of angles smaller than 𝛿"



Examples

Localized Hamiltonians and PDEs
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Heisenberg XXX model
Exact FABLE block-encoding 𝛿! = 0
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𝐽& = 𝐽' = 𝐽(



Laplacian operators
Exact FABLE block-encoding 𝛿! = 0
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1D:

2D:



Application: Preparation of 
Canonical Thermal Pure 

Quantum States
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Finite Temperature Properties on Quantum Computers 
Preparation of canonical thermal pure quantum (TPQ) states
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Quantum system …
• … of size N
• … with Hamiltonian H
• … at inverse temperature β

The TPQ state is given by: Connor Powers Lindsay Bassman
Oftelie

Bert de Jong

Haar-random pure state 

Non-unitary evolution

step 1

step 2

↔

arXiv:2109.01619



Two-step algorithm to prepare |𝜷, ⟩𝑵

1. Prepare Haar-random state

2. Non-unitary evolution
– QITE / inexact QITE
– Dilated unitary operator
– FABLE
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Comparison between circuit complexities
Tradeoff between gate complexity and number of ancilla qubits
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Conclusions
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A versatile tool for non-unitary evolution on quantum 
computers
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• FABLE enables implementation of non-unitary evolutions on quantum hardware
• Closely related to “classical data loading problem”
• Quantum circuits are fast and easy to generate up to ~15 qubits
• Many problems have structure that FABLE circuits can exploit through circuit 

compression

https://github.com/QuantumComputingLab/fable

circuit = fable(A)

Roel Van Beeumen

Want to try it out?

pip install fable-circuits



Thank you for your attention!
Job alert

We’re looking for 2 quantum algorithms 
postdocs to join our group:
• Quantum subspace methods

• Interdisciplinary team
• Theory, simulation, experimental

https://jobs.lbl.gov/jobs/quantum-
algorithms-postdoctoral-fellow-5138

https://jobs.lbl.gov/jobs/quantum-
algorithms-postdoctoral-fellow-5139
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Tutorial alert
Berkeley Quantum Synthesis Toolkit 

Friday at 10am (TUT24)

Questions?

bqskit.lbl.gov

https://jobs.lbl.gov/jobs/quantum-algorithms-postdoctoral-fellow-5138
https://jobs.lbl.gov/jobs/quantum-algorithms-postdoctoral-fellow-5139

