



## FABLE Fast Approximate Block-Encodings

Daan Camps, Roel Van Beeumen

arXiv:2205.00081

September 20, 2022

IEEE Quantum Week 2022 - Broomfield, CO





### **Outline of the talk**

FABLE: Quantum Circuits for Block-Encodings

### 01

Problem statement

02

Uniformly controlled rotations and FABLE circuits for realvalued and complex-valued matrices

### 03

Results on circuit compression and approximation

### 04

Examples on Hamiltonians and differential operators

05

Application: Preparation of thermal states

06

Conclusions

## **Problem statement**

**Quantum Circuits for Block-Encodings** 

### **Quantum computers perform unitary evolution**



- Unitary evolution has to be **synthesized/compiled** to lower level **quantum circuit** description:
  - Generic (multi-)qubit gates > native gates > pulse sequence
- Many interesting problems are **not unitary** in nature

### **Block-encodings**

A natural way to represent non-unitary transformation on quantum computers



• Wide range of applications: random walks, Hamiltonian simulation, quantum linear algebra, quantum machine learning, open quantum systems, thermal states, ...

### **Background on block-encodings**

A brief history of many (implicit) use cases

- Implicitly used by:
  - Szegedy (2004) in the context of quantized random walks
  - Berry, Childs, Kothari (2015) for Hamiltonian simulation
  - Childs, Kothari, Somma (2017) for quantum linear systems problem

- ...

• Formalized by Gilyen, Su, Low, Wiebe (2018) as part of seminal quantum singular value transformation algorithmic framework



Low, Chuang (2019), Gilyen et al. (2019), Martin et al. (2021) $_6$ 

### **Black box query access through oracles**

A common assumption throughout the literature

- Matrix access through one or more black box quantum query oracles
- For example: **sparse matrices**



### This talk

Direct encoding of the matrix data in a compact circuit

#### FABLE:

- takes in  $N \times N$  matrix A
- generates a circuit that consists of only H, R<sub>y</sub>, CX, SWAP gates
- classical complexity O(N<sup>2</sup> log N)
- worst-case circuit gate complexity O(N<sup>2</sup>)
  - often significantly better for structured problems (see examples)





## **Uniformly controlled rotations**

Key component for building matrix query oracles

FABLE - arXiv:2205.00081 | D. Camps - BERKELEY LAB

### Matrix query oracle

If we have access to an oracle that provides the matrix data in a superposition:



The following circuit block encodes the matrix:



10

### How to implement the oracle?

For a real-valued 2×2 matrix

• Define the angles

$$\theta_{ij} = \arccos(a_{ij})$$

• R<sub>y</sub> rotation

$$R_{y}(2\theta_{ij}) |0\rangle = \begin{bmatrix} \cos(\theta_{ij}) & -\sin(\theta_{ij}) \\ \sin(\theta_{ij}) & \cos(\theta_{ij}) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{ij} \\ \sqrt{1 - a_{ij}^{2}} \end{bmatrix}$$

• Fully controlled rotation for every matrix element



### **Uniformly controlled rotation**

An efficient circuit implementation for the matrix oracle

- Introduced by Möttönen et al. (2004)
- Two key elementary properties of R<sub>y</sub> rotations:

 $R_y(\theta_0) R_y(\theta_1) = R_y(\theta_0 + \theta_1),$  $X R_y(\theta) X = R_y(-\theta),$ 



### **Computing the rotation angles**

Structured linear system that can be solved efficiently

Linear system relates the angles in the circuit to the angles in the uniformly controlled rotation

This can be rewritten as

### **Overall FABLE circuit**

#### Uniformly controlled rotation circuit as matrix oracle



Real-valued matrix data



#### Complex-valued matrix data

- UCR<sub>y</sub> : sets the magnitude of the matrix entries
- UCR<sub>z</sub> : sets the phase of the matrix entries

#### FABLE circuit for $N \times N$ matrix:

- O(N<sup>2</sup> log N) classical cost to compute angles
- O(N<sup>2</sup>) CX, Ry gates
- 2 log N + 1 qubits

## **Compression theorem**

Circuit compression for approximate block-encodings

FABLE - arXiv:2205.00081 | D. Camps - BERKELEY LAB

### **Compression of uniformly controlled rotations**



 $\hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4, \hat{\theta}_5, \hat{\theta}_6 \leq \delta_c$ 



### **Compression theorem**

Removing small angles leads to small perturbations on the block-encoding

- Compression threshold  $\delta_c \geq 0$
- Input matrix  $A \in \mathbb{R}^{N \times N}$

The error on the block-encoding is bounded from above by:

$$\left\|A - \tilde{A}\right\|_2 \le N^3 \delta_c$$



- Pessimistic bound
- Many problems of interest have lots of angles smaller than  $\delta_c$



Localized Hamiltonians and PDEs

FABLE - arXiv:2205.00081 | D. Camps - BERKELEY LAB

### Heisenberg XXX model

Exact FABLE block-encoding  $\delta_c = 0$ 

$$H = \sum_{i=1}^{n-1} J_x X^{(i)} X^{(i+1)} + J_y Y^{(i)} Y^{(i+1)} + J_z Z^{(i)} Z^{(i+1)} \qquad \qquad J_x = J_y = J_z$$



### Laplacian operators

Exact FABLE block-encoding  $\delta_c = 0$ 

**1D:** 
$$L_{xx} = \begin{bmatrix} 2 & -1 & 0 & \cdots & * \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ * & \cdots & 0 & -1 & 2 \end{bmatrix}$$

**2D:** 
$$L = L_{xx} \oplus L_{yy} = L_{xx} \otimes I + I \otimes L_{yy}$$



Application: Preparation of Canonical Thermal Pure Quantum States

### **Finite Temperature Properties on Quantum Computers**

Preparation of canonical thermal pure quantum (TPQ) states

Quantum system ...

- ... of size N
- ... with Hamiltonian H
- ... at inverse temperature β

The TPQ state is given by:



$$\langle \hat{A} \rangle_{\beta,N}^{ens} \equiv \frac{\text{Tr}\left[e^{-\beta H}\hat{A}\right]}{\text{Tr}\left[e^{-\beta H}\right]} \quad \leftrightarrow \quad \langle \hat{A} \rangle_{\beta,N}^{TPQ} \equiv \frac{\langle \beta, N | \, \hat{A} \, | \beta, N \rangle}{\langle \beta, N | \beta, N \rangle}$$

### Two-step algorithm to prepare $|\beta, N\rangle$

1. Prepare Haar-random state



- 2. Non-unitary evolution
  - QITE / inexact QITE
  - Dilated unitary operator
  - FABLE

### **Comparison between circuit complexities**

Tradeoff between gate complexity and number of ancilla qubits

| CNOT Count                                 |    |      |      |      |  |   |  |  |
|--------------------------------------------|----|------|------|------|--|---|--|--|
| N QITE Inexact QITE Dilated Operator FABLE |    |      |      |      |  |   |  |  |
| $\boxed{2}$                                | 14 | 20   | 41   | 16   |  | 2 |  |  |
| 3                                          | 97 | 963  | 218  | 64   |  | 3 |  |  |
| 4                                          | -  | 1957 | 1025 | 256  |  | 4 |  |  |
| $\left 5\right $                           | -  | 2945 | 4474 | 1024 |  | 5 |  |  |

Ancillary Qubits

| 0        |                      |              |                  |                           |
|----------|----------------------|--------------|------------------|---------------------------|
| Ν        | QITE                 | Inexact QITE | Dilated Operator | FABLE                     |
| <b>2</b> | 2.85                 | 0.719        | 0.970            | $2.14 \text{x} 10^{-3}$   |
| 3        | $1.44 \text{x} 10^2$ | 3.71         | 1.53             | $6.39 \mathrm{x} 10^{-3}$ |
| 4        | -                    | 7.53         | 4.44             | $2.61 \text{x} 10^{-2}$   |
| <b>5</b> | -                    | 11.51        | 17.4             | $8.71 \text{x} 10^{-2}$   |

Circuit Generation Time [s]



## Conclusions

# A versatile tool for non-unitary evolution on quantum computers

- FABLE enables implementation of **non-unitary evolutions** on quantum hardware
- Closely related to "classical data loading problem"
- Quantum circuits are fast and easy to generate up to ~15 qubits
- Many problems have structure that FABLE circuits can exploit through circuit compression







### Thank you for your attention!

#### Job alert

We're looking for 2 quantum algorithms postdocs to join our group:

- Quantum subspace methods
- Interdisciplinary team
- Theory, simulation, experimental

https://jobs.lbl.gov/jobs/quantumalgorithms-postdoctoral-fellow-5138 https://jobs.lbl.gov/jobs/quantumalgorithms-postdoctoral-fellow-5139



FABLE - arXiv:2205.00081 | D. Camps - BERKELEY LAB

#### **Tutorial alert**

Berkeley Quantum Synthesis Toolkit Friday at 10am (TUT24)

from bqskit import Circuit, compile
circuit = Circuit.from\_file('in.qasm')
out\_circuit = compile(circuit)
out\_circuit.save('out.qasm')





bqskit.lbl.gov

**Questions?**