

On the implicit restart of the rational Krylov method

Chasing algorithms for polynomial, extended and rational Krylov

Daan Camps, Karl Meerbergen, and Raf Vandebril July 27, 2017

KU Leuven - University of Leuven - Department of Computer Science - NUMA

Problem statement

Single sentence problem statement

We want to compute a small number of eigenpairs of $A \in \mathbb{C}^{N \times N}$ that satisfy some property \mathfrak{P} .

Examples:

- All eigenvalues in a domain $\Omega \subset \mathbb{C}$
- The eigenvalue(s) with largest real part
- The eigenvalue(s) closest to the imaginary axis

Definition (Krylov subspace)

Given a matrix $A \in \mathbb{C}^{N \times N}$ and a vector $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^N$:

$$\mathcal{K}_{m+1} = \mathcal{K}_{m+1}(A, \boldsymbol{v}) \coloneqq \operatorname{span}\{\boldsymbol{v}, A\boldsymbol{v}, \dots, A^m \boldsymbol{v}\}.$$

Definition (Krylov subspace)

Given a matrix $A \in \mathbb{C}^{N \times N}$ and a vector $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^N$:

$$\mathcal{K}_{m+1} = \mathcal{K}_{m+1}(A, \boldsymbol{v}) \coloneqq \operatorname{span}\{\boldsymbol{v}, A\boldsymbol{v}, \dots, A^m\boldsymbol{v}\}.$$

- Assumption: subspace is A-variant: $A\mathcal{K}_{m+1} \nsubseteq \mathcal{K}_{m+1}$.
- Isomorphism: K_{m+1} ≅ P_m, i.e. ∀w ∈ K_{m+1}, ∃p ∈ P_m : w = p(A)v and vice versa.
- Orthogonal basis $V \in \mathbb{C}^{N \times (m+1)}$ such that

$$\operatorname{span}\{V_{(:,1:k+1)}\} = \operatorname{span}\{v, Av, \dots, A^kv\} \quad \forall k \leq m.$$

Arnoldi's method: recurrence relation

$$A V_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T$$

Arnoldi's method: recurrence relation

 $A V_m = V_{m+1} \underline{H}_m$

Arnoldi's method: recurrence relation

How to extract eigenpairs from \mathcal{K}_{m+1} ?

How to extract eigenpairs from \mathcal{K}_{m+1} ?

 \Rightarrow Compute the Ritz pairs

Small scale eigenvalue problem:

 $H_m \mathbf{z} = \vartheta \mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) \coloneqq (\vartheta, V_m \mathbf{z})$ satisfy Galerkin condition $A \mathbf{x} - \vartheta \mathbf{x} \perp \mathcal{K}_m$

What if the eigenvalues of A that satisfy \mathfrak{P} only converge for $m \to N$?

What if the eigenvalues of A that satisfy \mathfrak{P} only converge for $m \to N$?

- Explicit restart: for certain maximal *m*, select *w* ∈ K_{m+1} and continue constructing new K_{m+1}(A, *w*) from scratch (Saad, 1980).
- Implicit restart: for certain maximal m, apply *l*-th order polynomial filter and continue from k-th order K_{k+1}(A, ν̂) (l + k = m) (Sorensen, 1992).
- **Krylov-Schur:** compute and reorder the Schur decomposition of H_m (Stewart, 2001).

Implicitly restarted Arnoldi (IRA)

Input: $(V_{m+1}, \underline{H}_m), \{\varrho_i\}_{i=1}^l$ 1: for $i = 1 \dots l$ do 2: $\underline{H}_{m-i+1} - \varrho_i \underline{l}_{m-i+1} = \begin{bmatrix} Q & q \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$ 3: $\underline{H}_{m-i} \coloneqq Q^* \underline{H}_{m-i+1} Q_{(1:m-i+1,1:m-i)}$ 4: $V_{m-i+1} \coloneqq V_{m-i+2} Q$ 5: end for 6: return $\hat{V}_{k+1} \coloneqq V_{k+1}, \hat{H}_k \coloneqq H_k$

Implicitly restarted Arnoldi (IRA)

Input: $(V_{m+1}, \underline{H}_m), \{\varrho_i\}_{i=1}^l$ 1: for $i = 1 \dots l$ do 2: $\underline{H}_{m-i+1} - \varrho_i \underline{I}_{m-i+1} = \begin{bmatrix} Q & q \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$ 3: $\underline{H}_{m-i} \coloneqq Q^* \underline{H}_{m-i+1} Q_{(1:m-i+1,1:m-i)}$ 4: $V_{m-i+1} \coloneqq V_{m-i+2} Q$ 5: end for 6: return $\hat{V}_{k+1} \coloneqq V_{k+1}, \underline{\hat{H}}_k \coloneqq \underline{H}_k$

Result: $\hat{V}_{k+1} \mathbf{e}_1 = \prod_{i=1}^{l} (A - \varrho_i I) \mathbf{v}$

Practical implementation: Implicit-Q theorem

The Arnoldi decomposition $(V_{m+1}, \underline{H}_m)$ of order m is uniquely¹ defined by the matrix A and first column $V \boldsymbol{e}_1$.

¹essential uniqueness

Practical implementation: Implicit-Q theorem

The Arnoldi decomposition $(V_{m+1}, \underline{H}_m)$ of order m is uniquely¹ defined by the matrix A and first column $V e_1$.

¹essential uniqueness

Illustrative example

 $A \in \mathbb{R}^{500 \times 500}$, $\Lambda(A) \subset [0, 1]$, \mathfrak{P} : rightmost eigenvalue Diagonal matrix, logarithmically spaced eigenvalues

Illustrative example

$A \in \mathbb{R}^{500 \times 500}$, $\Lambda(A) \subset [0, 1]$, \mathfrak{P} : rightmost eigenvalue Diagonal matrix, logarithmically spaced eigenvalues

Definition (Rational Krylov sequence (Berljafa and Güttel, 2015)) Given a matrix $A \in \mathbb{C}^{N \times N}$, a vector $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^N$ and $q_m \in \mathcal{P}_m$ with roots $\Xi = \{\xi_1, \dots, \xi_m\} \in \overline{\mathbb{C}} \setminus \Lambda(A)$:

 $\mathcal{Q}_{m+1}(A, \mathbf{v}, \Xi) = \mathcal{Q}_{m+1}(A, \mathbf{v}, q_m) \coloneqq q_m(A)^{-1} \mathcal{K}_{m+1}(A, \mathbf{v}).$

Definition (Rational Krylov sequence (Berljafa and Güttel, 2015)) Given a matrix $A \in \mathbb{C}^{N \times N}$, a vector $\mathbf{0} \neq \mathbf{v} \in \mathbb{C}^N$ and $q_m \in \mathcal{P}_m$ with roots $\Xi = \{\xi_1, \ldots, \xi_m\} \in \overline{\mathbb{C}} \setminus \Lambda(A)$:

$$\mathcal{Q}_{m+1}(A,oldsymbol{v},\Xi)=\mathcal{Q}_{m+1}(A,oldsymbol{v},q_m)\coloneqq q_m(A)^{-1}\,\mathcal{K}_{m+1}(A,oldsymbol{v}).$$

Isomorphism: $\mathcal{Q}_{m+1} \cong q_m(z)^{-1} \mathcal{P}_m$, i.e. $\forall \boldsymbol{w} \in \mathcal{Q}_{m+1}, \exists p \in \mathcal{P}_m : \boldsymbol{w} = q_m(A)^{-1} p(A) \boldsymbol{v}$

Rational Arnoldi's method (Ruhe, 1998): recurrence relation

$$A V_{m+1} \underline{K}_m = V_{m+1} \underline{L}_m$$

Rational Arnoldi's method (Ruhe, 1998): recurrence relation

Rational Arnoldi's method (Ruhe, 1998): recurrence relation

Rational Arnoldi's method (Ruhe, 1998): recurrence relation

*(Abuse of) notation: $l_{i+1,i}/k_{i+1,i} = \xi_i$

How to extract eigenpairs from Q_{m+1} ?
How to extract eigenpairs from Q_{m+1} ?

 \Rightarrow Compute the Ritz pairs

Small scale eigenvalue problem:

 $\underline{K}_{m}^{\dagger}\underline{L}_{m}\,\mathbf{z}=\vartheta\,\mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) := (\vartheta, V_{m+1}\underline{K}_m \mathbf{z})$ satisfy Galerkin condition $A\mathbf{x} - \vartheta \mathbf{x} \perp \mathcal{K}_m(A, q_m(A)^{-1}\mathbf{v})$

What if the eigenvalues of A that satisfy \mathfrak{P} only converge for $m \to N$?

What if the eigenvalues of A that satisfy \mathfrak{P} only converge for $m \to N$? Same solutions as before!

- Explicit restart: for certain maximal *m*, select *w* ∈ Q_{m+1} and continue constructing new Q_{m+1}(A, *w*, *q̂*_m) from scratch.
- Implicit restart: for certain maximal m, apply *l*-th order polynomial filter and continue from k-th order Q_{k+1}(A, v̂, q_k) (l + k = m) (De Samblanx et al., 1997).
- **Krylov-Schur:** compute and reorder the generalized Schur decomposition of (L_m, K_m) (De Samblanx et al., 1997).

How to apply the polynomial filter implicitly?

How to apply the polynomial filter implicitly?

Special case: extended Krylov introduced by Druskin and Knizhnerman (1998)

 $\Xi_{\text{ext}} = \{\xi_i\}_{i=1}^m, \,\forall i : \xi_i \in \{0, \infty\}$

How to apply the polynomial filter implicitly?

Special case: extended Krylov introduced by Druskin and Knizhnerman (1998)

 $\Xi_{\text{ext}} = \{\xi_i\}_{i=1}^m, \,\forall i : \xi_i \in \{0, \infty\}$

Example: $\Xi_{ext} = \{0, \infty, \dots, 0\}$

The matrix pencil is in *condensed* format, chasing by elementary unitary operations (Camps et al., 2016)

How to apply the polynomial filter implicitly?

General case:

No longer in condensed format!

Solution

The QZ transformation is formulated in terms of elementary transformations on core transformations

Transformation: $(V_{m+1}, \underline{K}_m, \underline{L}_m) \rightarrow (\tilde{V}_{m+1}, \underline{\tilde{K}}_m, \underline{\tilde{L}}_m)$ with $\Xi_{\text{ext}} = \{\infty, 0, \infty, 0, \dots, 0\}$

Transformation: $(V_{m+1}, \underline{K}_m, \underline{L}_m) \rightarrow (\tilde{V}_{m+1}, \underline{\tilde{K}}_m, \underline{\tilde{L}}_m)$ with $\Xi_{\text{ext}} = \{\infty, 0, \infty, 0, \dots, 0\}$

 $\mathcal{Q}_{m+1}(A, \mathbf{v}, q_m) = \tilde{\mathcal{Q}}_{m+1}(A, \mathbf{w}, \Xi_{\text{ext}}) \quad \Rightarrow \quad \mathbf{w} = \alpha \ q_m(A)^{-1} \ A^{m/2} \ \mathbf{v}$

Transformation: $(V_{m+1}, \underline{K}_m, \underline{L}_m) \rightarrow (\tilde{V}_{m+1}, \underline{\tilde{K}}_m, \underline{\tilde{L}}_m)$ with $\Xi_{\text{ext}} = \{\infty, 0, \infty, 0, \dots, 0\}$

$$\mathcal{Q}_{m+1}(A,oldsymbol{v},q_m)= ilde{\mathcal{Q}}_{m+1}(A,oldsymbol{w},\Xi_{ ext{ext}}) \quad \Rightarrow \quad oldsymbol{w}=lpha\,q_m(A)^{-1}\,A^{m/2}\,oldsymbol{v}$$

Ritz values are **not** affected: $\underline{\tilde{K}}_m = Q \underline{K}_m Z$, $\underline{\tilde{L}}_m = Q \underline{L}_m Z$

Transformation: $(V_{m+1}, \underline{K}_m, \underline{L}_m) \rightarrow (\tilde{V}_{m+1}, \underline{\tilde{K}}_m, \underline{\tilde{L}}_m)$ with $\Xi_{\text{ext}} = \{\infty, 0, \infty, 0, \dots, 0\}$

$$\mathcal{Q}_{m+1}(A, oldsymbol{v}, q_m) = ilde{\mathcal{Q}}_{m+1}(A, oldsymbol{w}, \Xi_{ ext{ext}}) \quad \Rightarrow \quad oldsymbol{w} = lpha \, q_m(A)^{-1} \, A^{m/2} \, oldsymbol{v}$$

Ritz values are **not** affected: $\underline{\tilde{K}}_m = Q \underline{K}_m Z$, $\underline{\tilde{L}}_m = Q \underline{L}_m Z$

 $\underline{\tilde{K}}_{m}^{\dagger}\underline{\tilde{L}}_{m}=Z^{*}\underline{K}_{m}^{\dagger}Q^{*}Q\underline{L}_{m}Z$

Conclusion

- Filtering (rational) Krylov subspaces is useful to limit subspace dimension when searching for eigenvalues satisfying a property $\mathfrak P$
- The filter can be applied implicitly by means of elementary unitary operations (*chasing*) both for polynomial and rational Krylov

Thank you
References

- Berljafa, M. and Güttel, S. (2015). Generalized Rational Krylov Decompositions with an Application to Rational Approximation. *SIAM J. Matrix Anal. Appl.*, 36(2):894–916.
- Camps, D., Meerbergen, K., and Vandebril, R. (2016). Implicit restart of the extended Krylov method. *Submitted*.
- De Samblanx, G., Meerbergen, K., and Bultheel, A. (1997). The implicit application of a rational filter in the RKS method. *BIT Numer. Math.*, 37(4):925–947.
- Druskin, V. and Knizhnerman, L. (1998). Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions. SIAM J. Matrix Anal. Appl., 19(3):755–771.
- Ruhe, A. (1998). Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput., 19(5):1535–1551.
- Saad, Y. (1980). Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. *Linear Algebra Appl.*, 34:269–295.
- Sorensen, D. C. (1992). Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM J. Matrix Anal. Appl., 13(1):357–385.
- Stewart, G. (2001). A Krylov-Schur algorithm for large eigenproblems. *SIAM J. Matrix Anal. Appl.*, 23(3):601–614.