

Rational matrix algorithms for the generalized eigenvalue problem Iterative and direct methods

Daan Camps, Karl Meerbergen, and Raf Vandebril October 12, 2017

KU Leuven - University of Leuven - Department of Computer Science - NUMA

Part I	Part II
Standard eigenvalue problem	Generalized eigenvalue problem
Large scale: Polynomial Krylov	Large scale: Rational Krylov
\$	\$
Medium scale: Francis' QR algorithm	Medium scale: Rational QZ algorithm

Part I: Polynomial methods

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

Computational complexity of Francis' QR: $\mathcal{O}(n^3)$ Assume: 1 GHz CPU $ightarrow 10^9$ flop/s

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

Computational complexity of Francis' QR: $\mathcal{O}(n^3)$

 $\frac{n}{10^3} \frac{\text{CPU time}}{1 \text{ s}}$

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

n	CPU time
10 ³	1 s
104	10 ³ s

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

n	CPU time
10 ³	1 s
104	17 min

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

n	CPU time
10 ³	1 s
104	17 min
10 ⁵	10 ⁶ s

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

n	CPU time
10 ³	1 s
104	17 min
10 ⁵	11.6 days

Definition SEP

- $A \in \mathbb{C}^{n \times n}$
- (λ, \mathbf{x}) is called an *eigenpair* of A if

 $A\mathbf{x} = \lambda \mathbf{x}.$

n	CPU time
10 ³	1 s
104	17 min
10 ⁵	11.6 days
10 ⁶	32 years

Consider the sequence of $\ell + 1$ vectors:

 $\boldsymbol{v}, \boldsymbol{A}\boldsymbol{v}, \boldsymbol{A}^2\boldsymbol{v}, \ldots, \boldsymbol{A}^\ell\boldsymbol{v}.$

Consider the sequence of $\ell + 1$ vectors:

 $\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, \ldots, A^\ell\mathbf{v}.$

Assume $1 \leq \ell \leq n$ such that the vectors become linearly dependent.

Consider the sequence of $\ell + 1$ vectors:

 $\boldsymbol{v}, \boldsymbol{A}\boldsymbol{v}, \boldsymbol{A}^2\boldsymbol{v}, \ldots, \boldsymbol{A}^\ell\boldsymbol{v}.$

Assume $1 \leq \ell \leq n$ such that the vectors become linearly dependent.

Then

$$\exists p \in \mathcal{P}_{\ell} : p(A)\boldsymbol{v} = a_0\boldsymbol{v} + a_1A\boldsymbol{v} + \ldots + a_{\ell}A^{\ell}\boldsymbol{v} = \boldsymbol{0} \qquad \text{with } a_{\ell} \neq 0$$

If we factorize:

$$oldsymbol{
u}(A)oldsymbol{v} = \prod_{i=1}^\ell (A-\lambda_iI)oldsymbol{v} = oldsymbol{0}$$

If we factorize:

$$p(A)\mathbf{v} = (A - \lambda_1 I) \prod_{i=2}^{\ell} (A - \lambda_i I) \mathbf{v} = (A - \lambda_1 I) \mathbf{x}_1 = \mathbf{0}$$

If we factorize:

$$p(A)\mathbf{v} = (A - \lambda_1 I) \prod_{i=2}^{\ell} (A - \lambda_i I) \mathbf{v} = (A - \lambda_1 I) \mathbf{x}_1 = \mathbf{0}$$

 \Rightarrow we can prove that the ℓ roots of p are eigenvalues of A

If we factorize:

$$p(A)\mathbf{v} = (A - \lambda_1 I) \prod_{i=2}^{\ell} (A - \lambda_i I) \mathbf{v} = (A - \lambda_1 I) \mathbf{x}_1 = \mathbf{0}$$

 \Rightarrow we can prove that the ℓ roots of p are eigenvalues of A

Definition polynomial Krylov subspace

- $A \in \mathbb{C}^{n \times n}$ and $\mathbf{v} \in \mathbb{C}^n$
- The Krylov subspace of order m + 1:

 $\mathcal{K}_{m+1}(A, \mathbf{v}) = \operatorname{span}\{\mathbf{v}, A\mathbf{v}, \dots, A^m\mathbf{v}\}$

- $m = \ell$:
 - \mathcal{K}_{m+1} invariant subspace of A
 - \mathcal{K}_{m+1} contains *m* eigenpairs

- $m = \ell$:
 - \mathcal{K}_{m+1} invariant subspace of A
 - \mathcal{K}_{m+1} contains *m* eigenpairs
- *m* < *ℓ*:
 - \mathcal{K}_{m+1} often *contains* accurate approximations to some eigenpairs of A.

• $m = \ell$:

- \mathcal{K}_{m+1} invariant subspace of A
- \mathcal{K}_{m+1} contains *m* eigenpairs
- *m* < *ℓ*:
 - \mathcal{K}_{m+1} often *contains* accurate approximations to some eigenpairs of A.

Issue with \mathcal{K}_{m+1}

Assume $A = A^T \in \mathbb{R}^{n \times n}$. Suppose $|\lambda_1| > |\lambda_2|$ with eigenvector \mathbf{x}_1 . Then

$$\|A^{k}\mathbf{v}-\mathbf{x}_{1}\|=\mathcal{O}\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$$

 \Rightarrow this rapidly becomes a very ill-conditioned basis!

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (= 1)

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

$$m = 0 \mid \mathcal{K}_1 \mid \mathbf{v}_1 = \mathbf{v}/\|\mathbf{v}\|$$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

 $\begin{array}{c|c} m = 0 & \mathcal{K}_1 & \boldsymbol{v}_1 = \boldsymbol{v} / \| \boldsymbol{v} \| \\ m = 1 & \mathcal{K}_2 & \boldsymbol{v}_1 & \mathcal{A} \boldsymbol{v}_1 \end{array}$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

$$m = 0 \mid \mathcal{K}_1 \mid \mathbf{v}_1 = \mathbf{v} / \|\mathbf{v}\|$$
$$m = 1 \mid \mathcal{K}_2 \mid \mathbf{v}_1 \qquad \mathbf{v}_1$$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

$$\begin{array}{c|c} m = 0 & \mathcal{K}_1 & \mathbf{v}_1 = \mathbf{v} / \|\mathbf{v}\| \\ m = 1 & \mathcal{K}_2 & \mathbf{v}_1 & \mathbf{v}_1 \\ \end{array}$$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (= 1)

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

At step k:

$$A\mathbf{v}_k = h_{1k}\mathbf{v}_1 + \ldots + h_{kk}\mathbf{v}_k + h_{k+1,k}\mathbf{v}_{k+1}$$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

At step k:

$$A\boldsymbol{v}_{k} = \begin{bmatrix} \boldsymbol{v}_{1} & \dots & \boldsymbol{v}_{k} & \boldsymbol{v}_{k+1} \end{bmatrix} \begin{bmatrix} h_{1k} \\ \vdots \\ h_{kk} \\ h_{k+1,k} \end{bmatrix}$$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

Combining all *m* steps:

 $A V_m = V_{m+1} \underline{H}_m$

Solution: create a basis of \mathcal{K}_{m+1} with the best possible condition number (=1)

Combining all *m* steps:

Column k satisfies Eq. (\bigstar)

How to extract eigenpairs from \mathcal{K}_{m+1} ?

 \Rightarrow Compute the **Ritz pairs**:

 $H_m \mathbf{z} = \vartheta \mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) \coloneqq (\vartheta, V_m \mathbf{z})$

How to extract eigenpairs from \mathcal{K}_{m+1} ?

 \Rightarrow Compute the **Ritz pairs**:

 $H_m \mathbf{z} = \vartheta \mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) \coloneqq (\vartheta, V_m \mathbf{z})$

Link between iterative and direct methods

 H_m upper Hessenberg matrix \Rightarrow Francis' implicitly shifted QR

Implicitly shifted QR (Francis, 1961, 1962)

Implicitly shifted QR (Francis, 1961, 1962)

 $Q_0 \boldsymbol{e}_1 = \alpha (\boldsymbol{A} - \varrho \boldsymbol{I}) \boldsymbol{e}_1$

. . .

. . .

Part II: Rational methods

Definition GEP

- $A, B \in \mathbb{C}^{n \times n}$
- The triplet $(\alpha, \beta, \mathbf{x})$ is called an *eigentriplet* of (A, B) if:

 $\beta A \mathbf{x} = \alpha B \mathbf{x}.$

 $A: \mathcal{K}_{m+1} \mid \boldsymbol{v}, A\boldsymbol{v}, \dots, A^{m}\boldsymbol{v}$

$$\begin{array}{ccc} A : & \mathcal{K}_{m+1} \\ (A,B) : & \mathcal{K}_{m+1} \end{array} \begin{array}{c} \boldsymbol{v}, A\boldsymbol{v}, \dots, A^{m}\boldsymbol{v} \\ \boldsymbol{v}, B^{-1}A\boldsymbol{v}, \dots, (B^{-1}A)^{m}\boldsymbol{v} \end{array}$$

$$\begin{array}{lll} A : & \mathcal{K}_{m+1} & \boldsymbol{v}, A \boldsymbol{v}, \dots, A^{m} \boldsymbol{v} \\ (A, B) : & \mathcal{K}_{m+1} & \boldsymbol{v}, B^{-1} A \boldsymbol{v}, \dots, (B^{-1} A)^{m} \boldsymbol{v} \\ (A, B) : & \mathcal{Q}_{m+1} & \boldsymbol{v}, M_{1} \boldsymbol{v}, \dots, M_{m} \boldsymbol{w} \end{array}$$

The Möbius transformation of (A, B) with pole $\xi_i = -\beta_i / \alpha_i$ and zero $\varrho_i = -\delta_i / \gamma_i$:

$$M_i = (\alpha_i A + \beta_i B)^{-1} (\gamma_i A + \delta_i B)$$
(\$\black\$)

This leads to a subspace of rational functions in (A, B) with a fixed denominator.

Special choices for (\clubsuit) :

- Polynomial Krylov: $M = B^{-1}A$ with pole at $\xi = \infty$
- Extended Krylov: Either $\xi = \infty$ ($M = B^{-1}A$) or $\xi = 0$ ($M = A^{-1}B$)
- Shift-and-invert Krylov: A single, fixed ξ ($M = (A \xi B)^{-1}B$)

Motivation for using rational methods

Rational Arnoldi's method (Ruhe, 1998)

 $A V_{m+1} \underline{K}_m = B V_{m+1} \underline{L}_m$

Rational Arnoldi's method (Ruhe, 1998)

*(Abuse of) notation: $l_{i+1,i}/k_{i+1,i} = \xi_i$

How to extract eigenpairs from Q_{m+1} ?

 \Rightarrow Compute the **Ritz pairs**:

 $L_m \mathbf{z} = \vartheta K_m \mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) := (\vartheta, V_{m+1}\underline{K}_m \mathbf{z})$

How to extract eigenpairs from Q_{m+1} ?

 \Rightarrow Compute the **Ritz pairs:**

 $L_m \mathbf{z} = \vartheta K_m \mathbf{z}$

Ritz pairs $(\vartheta, \mathbf{x}) \coloneqq (\vartheta, V_{m+1}\underline{K}_m \mathbf{z})$

No immediate link between iterative and direct methods

 (L_m, K_m) is a pair of upper Hessenberg matrices \Rightarrow Moler & Stewart's implicitly shifted QZ algorithm <u>cannot</u> directly be applied.

. . .

. . .

A rational QZ algorithm

. . .

Using the additional degrees of freedom

Example 2

Conclusion

Conclusion and outlook

Conclusion:

Outlook:

- Implicit steps of higher degree
- AED
- LAPACK-style software

- Arnoldi, W. E. (1951). The principle of minimized iteration in the solution of the matrix eigenvalue problem. *Quart. Appl. Math.*, 9:17–29.
- Francis, J. G. F. (1961). The QR Transformation A Unitary Analogue to the LR Transformation—Part 1. Comput. J., 4(3):265–271.
- Francis, J. G. F. (1962). The QR Transformation—Part 2. Comput. J., 4(4):332-345.
- Moler, C. B. and Stewart, G. W. (1973). An Algorithm for Generalized Matrix Eigenvalue Problems. *SIAM J. Numer. Anal.*, 10(2):1–52.
- Ruhe, A. (1998). Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput., 19(5):1535–1551.