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Abstract

The matrix eigenvalue problem is often encountered in scientific computing
applications. Although it has an uncomplicated problem formulation, the best
numerical algorithms devised to solve it are far from obvious.

Computing all eigenvalues of a small to medium-sized matrix is nowadays a
routine task for an algorithm of implicit QR-type using a bulge chasing technique.
On the other hand projection methods are often used to compute a subset of
the eigenvalues of sparse, large-scale eigenproblems. Krylov subspace methods
are probably among the most used methods within this class.

The convergence of the classical implicit QR and Krylov subspace methods is
determined by polynomials. The lion’s share of this thesis is concerned with
QR-type methods whose convergence is governed by the more general class of
rational functions.

The first numerical scheme we present is the rational QZ method for the
generalized eigenvalue problem. It uses a pole swapping technique on Hessenberg
pencils. We provide an implicit Q theorem for Hessenberg pencils which
motivates the pole swapping approach as it shows that the rational QZ iterates
are unique. Rational Krylov theory allows us to prove that the rational QZ
method implicitly performs subspace iteration accelerated by rational functions.
An exactness result is included which shows that, in exact arithmetic, a pole
swapping algorithm deflates a perfect shift in a single iteration. Numerical
experiments exemplify that novel rational shifting strategies significantly reduce
the computational cost compared to their polynomial counterparts. Furthermore,
we propose a novel reduction algorithm to Hessenberg form and show that
premature middle deflations can already be induced during the reduction phase
provided a good choice of poles is made. Finally, a new swapping algorithm is
introduced and an error analysis is provided which shows that the algorithm is
backward stable.

In the subsequent chapter recent developments for polynomial QR-type methods
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are adapted to the rational QZ method. This results in a multishift, multipole
rational QZ method with tightly-packed shifts and poles. Aggressive early
deflation is included to detect converged eigenvalues before classical deflation
criteria are able to do so. Our implementation is made publicly available and
numerical experiments demonstrate that it outperforms LAPACK in terms of
accuracy, speed and empiric time complexity.

A rational QR method is proposed as a special case of the rational QZ method
which treats the standard eigenvalue problem in an efficient manner. This
method applies a pole swapping algorithm on Hessenberg, unitary Hessenberg
pencils where only O(n) storage space is required for the unitary matrix.
Consequently, the storage requirements and computational cost is approximately
half of the rational QZ method. Numerical experiments show that the pole
swapping algorithm can outperform a bulge chasing method from LAPACK by
reducing the CPU time by more than 30%.

Two-sided pole swapping algorithms for tridiagonal pencils are studied in the
penultimate chapter. These result in the rational LR algorithm for unsymmetric
pencils and the rational TTT algorithm for symmetric, diagonalizable pencils.
These algorithms have a reduced computational cost of O(n2) thanks to the
tridiagonal structure but employ non-unitary equivalence transformations such
that numerical stability is no longer guaranteed. We provide optimality results
for the non-unitary transformations. Numerical experiments show promising
results but also show that numerical stability is nontrivial.

The last chapter of the thesis considers the well-known rational Krylov method
for the solution of large-scale eigenproblems. We show how eigenvalue estimates
obtained with the rational Krylov method can be computed with the rational
QZ method. Furthermore, we test the pole swapping technique to efficiently
filter and restart the rational Krylov method.



Beknopte samenvatting

Het matrix eigenwaardeprobleem is vaak voorkomend in wetenschappelijk
rekenen. Alhoewel de probleemstelling eenvoudig is, zijn de beste numerieke
algoritmes verre van voor de hand liggend.

Het berekenen van alle eigenwaarden van een kleine tot middelgrote matrix is
tegenwoordig een routine taak voor een impliciet QR algoritme dat gebruik
maakt van een bulge chasing techniek. Voor grote, ijle eigenwaardeproblemen
worden vaak projectiemethodes gebruikt om een deelverzameling van de
eigenwaarden te berekenen. Krylov deelruimtemethodes zijn waarschijnlijk
bij de meest gebruikte methodes binnen deze klasse.

Het convergentiegedrag van zowel het klassieke impliciet QR algoritme als van
Krylov deelruimtemethodes wordt bepaald door veeltermen. Het leeuwendeel
van deze thesis houdt zich bezig met QR-type methodes waarvoor het
convergentiegedrag bepaald wordt door meer algemene rationale functies.

Het eerste numerieke schema dat we voorstellen is de rationale QZ methode
voor veralgemeende eigenwaardeproblemen. De methode maakt gebruik van
een poolpermutatietechniek voor Hessenberg matrix paren. We formuleren een
impliciete Q stelling voor Hessenberg matrix paren die een motivering geeft voor
de poolpermutatie aanpak vermits ze aantoont dat de rationale QZ iteraties
uniek zijn. Rationale Krylov theorie stelt ons in staat om te bewijzen dat de
rationale QZ methode impliciet een deelruimte-iteratie uitvoert die versneld
wordt door rationale functies. Een nauwkeurigheidsstelling toont aan dat, in
oneindige precisie, poolpermutatiemethodes met een perfecte shift in een enkele
iteratie tot een deflatie leiden. Numerieke experimenten tonen aan dat de
rationale QZ methode leidt tot een significante vermindering van het rekenwerk
in vergelijking met de klassieke QZ methode. Verder formuleren we ook een
nieuw algoritme om een matrix paar te reduceren tot Hessenbergvorm en tonen
we dat een goede keuze van polen kan leiden tot voortijdige middendeflaties
tijdens de reductiefase. Ten slotte stellen we een nieuw permutatie algoritme voor
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en voorzien we een foutenanalyse die aantoont dat deze methode achterwaarts
stabiel is.

Het daaropvolgende hoofdstuk past recente ontwikkelingen voor het QR
algoritme aan voor de rationale QZ methode. Dit resulteert in een multishift,
multipool rationale QZ methode met dicht op elkaar gepakte shifts en
polen. Bovendien maken we gebruik van aggressieve voortijdige deflatie om
geconvergeerde eigenwaarden te detecteren vooraleer klassieke deflatie criteria ze
kunnen detecteren. Onze implementatie van het algoritme is publiek beschikbaar
gemaakt en de numerieke testen tonen aan dat het LAPACK kan overtreffen
op vlak van nauwkeurigheid, snelheid en empirische tijdscomplexiteit.

Verder stellen we een rationale QR methode voor als een specificatie van de
rationale QZ methode die het standaard eigenwaardeprobleem op efficiënte
wijze behandelt. Deze methode past een poolpermutatie-algoritme toe
op Hessenberg, unitaire Hessenberg matrix paren en vereist slechts O(n)
opslagruimte voor de unitaire matrix. Dit halveert de opslagruimte en de
rekenkost in vergelijking met de rationale QZ methode. Numerieke testen
demonstreren dat het poolpermutatie-algoritme een bulge chasing methode van
LAPACK kan overtreffen door de rekentijd met meer dan 30% te reduceren.

Tweezijdige poolpermutatie-algoritmes voor tridiagonale matrix paren worden
bestudeerd in het voorlaatste hoofdstuk. Dit resulteert in het rationale LR
algoritme voor niet-symmetrische paren en het rationale TTT voor symmetrische,
diagonaliseerbare paren. Deze algoritmes hebben een verminderde rekenkost van
O(n2) dankzij de tridiagonale structuur maar ze maken gebruik van niet-unitaire
equivalentie transformaties waardoor numerieke stabiliteit niet gegarandeerd
kan worden. We voorzien optimaliteitsvoorwaarden voor de niet-unitaire
transformaties. Numerieke experimenten geven veelbelovende resultaten maar
tonen ook dat numerieke stabiliteit in dit geval niet triviaal is.

Het laatste hoofdstuk van de thesis gaat over de welbekende rationale
Krylov methode for grootschalige eigenwaardeproblemen. We tonen aan hoe
benaderende eigenwaarden, verkregen met behulp van de rationale Krylov
methode, met de rationale QZ methode berekend kunnen worden. Verder testen
we ook de poolpermutatietechniek om op een efficiënte manier de rationale
Krylov methode te filteren en herstarten.
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Chapter 1

Introduction

The matrix eigenvalue problem plays a central role in many computational
problems encountered in science and engineering. The scalar λ is called an
eigenvalue of the square matrix A if there exists a nonzero vector x such that,

Ax = λx.

The vector x is correspondingly called an eigenvector of A.

The numerical solution of the matrix eigenvalue problem has been an active
area of research in numerical linear algebra, at least since the mid-twentieth
century. Figure 1.1 shows the increase in number of publications per year that
are listed in Web of Science [1] on the topic of eigenvalues.
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Figure 1.1: Number of publications per year on the topic of eigenvalues since
1955. Data downloaded from Web of Science [1] on February 9, 2019.
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2 INTRODUCTION

A few of the corresponding Web of Science categories include “(applied) mathe-
matics”, “electrical and electronic engineering”, “mathematical physics”,“optics”,
“acoustics”, and even “computer science artificial intelligence”. This brief meta-
analysis demonstrates that the eigenvalue problem has been a well-studied
problem for many decades and will likely remain so for the foreseeable future.

The remainder of this chapter consists of two parts. Section 1.1 gives a concise
historical overview of the development of numerical methods for the eigenvalue
problem. Section 1.2 presents the plan for the thesis.

1.1 A concise historical overview

In 1829, Cauchy proved that a symmetric matrix can be orthogonally
diagonalized and that all its eigenvalues are real [21]. Although somewhat
arbitrary, Hawkins [53] argues that this is the beginning of the modern day
study of matrix eigenvalue problems. Cauchy himself used the term racine
caractéristique instead of eigenvalue. The derived name characteristic polynomial
for p(λ) = det(A− λI) is still used at present. The term eigenvalue dates back
to the beginning of the 20th century and is attributed to German mathematician
Hilbert who used the terminology eigenfunktion and eigenwert in a study of
linear integral equations [56].

With the advent of digital computers in the 20th century, the study of
numerical methods for the solution of the matrix eigenvalue problem increased
exponentially, see Figure 1.1.

A first major breakthrough is due to Rutishauser. He invented the quotient-
difference (qd) algorithm [98–100] to find zeros of polynomials or poles of rational
functions. He noticed that the rhombus update rules for the qd transformation
admit the following matrix interpretation,

L̂R̂ = RL. (1.1)

In the qd algorithm L is a bidiagonal, lower triangular matrix and R a bidiagonal
upper triangular matrix. Rutishauser soon noticed that the iterative rule (1.1) of
factoring a matrix as a product of an upper and lower triangular matrix, reversing
their order, and multiplying them together can also be applied to general dense
matrices. This resulted in his LR algorithm [101]. More information on the
early developments that lead Rutishauser from the qd to the LR algorithm is
available in [50].

The second major breakthrough is attributed to both Francis [39, 40] and
Kublanovskaya [69]. Both authors independently proposed the implicitly shifted
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QR algorithm. This algorithm displays better numerical stability properties
than the LR algorithm as it uses unitary transformations. Furthermore, the
implicit double-shift approach allows for real arithmetic in real-valued problems.

In its simplest form, the explicit QR algorithm applies the following iterative
rule:

A = QR → Â = RQ. (1.2)
As Q is unitary, Â = Q∗AQ which means that Â is unitarily similar to A and
thus has the same eigenvalues. Repeating the iterative rule (1.2) over and over,
it is nearly certain that the matrix converges to upper triangular form with the
eigenvalues of the original matrix readily available on the diagonal.

The practical QR algorithm, which is derived from the results of Francis and
Kublanovskaya, is at present still the method of choice for computing all
eigenvalues of a small to medium-sized dense matrix. It bears little resemblance
to the simple iterative procedure (1.2). We go into more detail on what makes
the QR algorithm both stable and efficient in Chapter 2.

For more historical details on the development of the QR method, we refer to
the review papers by Watkins [133, 134, 139], Parlett [88] and Golub [45]. For a
complete treatment of the most important developments in numerical methods
for the matrix eigenvalue in the past decades, we refer to the monographs
[66,138].

1.2 Overview of the thesis

The thesis is organized as follows.

Chapter 1 provides a high-level problem setting, gives a short historical
overview, and presents the plan for the thesis.

Chapter 2 mostly contains preliminary material. In this chapter we introduce
relevant properties and decompositions for the matrix eigenvalue problem. We
also provide an overview of Krylov subspace methods and of QR-type and
QZ-type methods for standard and generalized eigenvalue problems. We pay
special attention to the connection between these seemingly different classes of
methods and discuss that their convergence is determined by polynomials.

Chapter 3 presents the rational QZ method for the numerical solution of the
generalized eigenvalue problem. This chapter begins with a study of Hessenberg
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pairs and their properties. Two operations to change the poles of a Hessenberg
pair are introduced: pole introduction and pole swapping. We present a
backward stable pole swapping algorithm. These two operations are used to
formulate a direct reduction method to a Hessenberg pair with prescribed
poles and to formulate the rational QZ method. Numerical experiments show
that the reduction algorithm can induce premature middle deflations which
can significantly reduce the computational cost of the overall algorithm. It is
also observed that the rational QZ method can outperform the polynomial QZ
method by effectively reducing the required number of iterations provided a
good choice of poles is made. The implicit rational QZ method is motivated
by a theoretical analysis which reveals a connection with rational Krylov. This
connection is exploited to prove an implicit Q theorem showing that the rational
QZ iterates are unique. It also allows us to prove that the rational QZ method
implicitly performs nested subspace iteration accelerated by rational functions.
Finally, we provide an exactness result, which shows that, in exact arithmetic,
a rational QZ step deflates an eigenvalue in a single iteration.

The majority of this chapter is based on the article [19]:

Camps D., Meerbergen K., and Vandebril R., A rational QZ method.
(2019) SIAM J. Matrix Anal. Appl. Vol. 40, No. 3, pp. 943–972.

The discussion on the backward stable algorithms to compute the swapping
transformations in Section 3.3.2 is based on [16]:

Camps D., Mach T., Vandebril R., and Watkins D. S., On
pole-swapping algorithms for the eigenvalue problem. (2019) Submitted.

This article by Watkins and coauthors also studies the effect of a single pole
swap and shows how they can be combined to achieve convergence results for
any pole swapping method.

Chapter 4 generalizes the rational QZ method of Chapter 3 to the multishift,
multipole rational QZ method for block Hessenberg pencils. We also incorporate
the aggressive early deflation strategy into the algorithm and use it both at
the top-left and bottom-right sides of the pencil. Special attention is paid to
the swapping transformations involving 2×2 blocks. We present the results of
some numerical experiments obtained with our Fortran package libRQZ which
implements the described algorithms. The numerical experiments illustrate that
our algorithm is able to outperform LAPACK [2] in terms of accuracy, speed
and empirical time complexity. The software is made publicly available on:
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http://numa.cs.kuleuven.be/software/rqz

This chapter is based on the paper [18]:

Camps D., Meerbergen K., and Vandebril R., A multishift, multipole
rational QZ method with aggressive early deflation. (2019) Submitted.

Section 4.4 is partially based on [17]:

Camps D., Mastronardi N., Vandebril R., and Van Dooren P.,
Swapping 2× 2 blocks in the Schur and generalized Schur form. (2019)

Accepted for publication in J. Comput. Appl. Math.

Chapter 5 presents a specification of the rational QZ method for Hessenberg,
unitary Hessenberg pencils that requires approximately half the storage space
and computational cost of the dense rational QZ method from Chapter 3. This
efficiency gain is achieved by using a compact representation of the unitary
matrix in terms of core transformations. We show how the pole swapping
operations are implemented such that the compact representation is accurately
preserved throughout the algorithm. The main purpose of this algorithm is to
enable the use a pole swapping algorithm for the standard eigenvalue without
the need of explicitly storing two dense n×n matrices. We refer to it as the
rational QR method if the algorithm is used in this sense. Numerical experiments
show a significant reduction in CPU time compared to one of the QR routines
from LAPACK [2].

This chapter is based on a paper which is currently in preparation:

Camps D., Mach T., Vandebril R., and Watkins D. S., Pole swapping
methods for Hessenberg, unitary Hessenberg pencils: Rational QR algorithms.

In preparation.

Chapter 6 presents a class of two-sided pole swapping algorithms for (block)
tridiagonal pencils. These methods make use of non-unitary transformations
required to preserve the (block) tridiagonal structure throughout the algorithm.
We discuss how the pole manipulation operations can be carried out using
non-unitary transformations that are (nearly) optimally scaled. We provide
uniqueness and convergence results for the tridiagonal case using the rational
Krylov theory of Chapter 3. For the class of diagonalizable, symmetric (block)
tridiagonal pencils we propose a rational TTT (or T3) algorithm which uses

http://numa.cs.kuleuven.be/software/rqz
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congruence transformations. For unsymmetric tridiagonal pencils we present a
rational LR algorithm which allows us to independently manipulate the lower
and upper pole tuples in order to induce convergence of eigenvalues at the
subdiagonal or superdiagonal, respectively.

This chapter is based on a paper which is currently in preparation:

Camps D., Vandebril R., and Van Dooren P., Two-sided rational LR
iterations for tridiagonal pencils. In preparation.

Chapter 7 focuses on the iterative rational Krylov method for large-scale
eigenproblems. We provide three contributions. Firstly, we show how Ritz
values obtained with the rational Krylov method can be computed with the
rational QZ method. Secondly, we study the structure of the Galerkin projection
on a rational Krylov basis. Thirdly, we test the pole swapping technique to
implicitly filter and restart the rational Krylov method and make a comparison
with existing methods which shows the superiority of this approach.

This chapter is based on the paper [20]:

Camps D., Meerbergen K., and Vandebril R., An implicit filter for
rational Krylov using core transformations. (2019) Linear Algebra and its

Applications. Volume 561, 15 January 2019, Pages 113-140.

Chapter 8 concludes the thesis by summarizing the main findings and results
and provides an outlook for future research directions.

Appendix A discusses core transformations and the extended Hessenberg form.
Extended Hessenberg matrices and pencils come into play in extended QR and
QZ methods, which can be viewed as an intermediate step, in terms of generality,
between polynomial and rational QR and QZ methods.

Appendix B provides the detailed error analysis for the backward stable
pole swapping methods of Section 3.3.2 and numerical evidence that the new
approach is more accurate than existing methods. This material is based on [16].

Publicly available software

Reference implementations for most of the algorithms discussed in this thesis
are made available online on the webpage:
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http://numa.cs.kuleuven.be/software/rqz

The most notable contribution is the Fortran implementation of the multishift,
multipole rational QZ method with aggressive early deflation as part of the
libRQZ package. We are aware that this is still research code which is in
no way of the same quality as robust implementations like these provided
by LAPACK [2]. It is our hope that it can prove to be valuable for further
development of eigenvalue solvers for the dense, generalized eigenvalue problem.

We intend to also provide reference implementations of the algorithms that are
discussed in Chapter 5 and Chapter 6 as soon as the articles are finished.

http://numa.cs.kuleuven.be/software/rqz




Chapter 2

Krylov and QR eigenvalue
methods

This chapter has two main goals. The first objective is to give a thorough
introduction to the properties and decompositions related to both the standard
and generalized eigenvalue problems. The second goal is to introduce two types
of numerical algorithms for the eigenvalue problem: Krylov subspace methods
and QR/Z-type methods. We pay special attention to the connection between
both.

The chapter is organized as follows. Section 2.1 gives an introduction to invariant
subspaces and Schur decompositions for the standard eigenvalue problem and to
deflating subspaces and the generalized Schur decomposition for the generalized
eigenvalue problem. This material is inspired by the excellent introductions
to (generalized) eigenvalue problems presented in the monographs [46,66,138].
Section 2.2 introduces Krylov subspace methods for the solution of large-scale
eigenvalue problems. Section 2.3 discusses the implicit QR and QZ methods
and highlights the connections with Krylov-type methods. Section 2.4 gives a
conclusion by summarizing the key results.

9
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2.1 Properties and decompositions

2.1.1 The standard eigenvalue problem

The eigenvalues of a matrix A ∈ Fn×n, with F ∈ {R,C}, are the n roots of its
characteristic polynomial p(λ) = det(A− λI). We call the multiset,

Λ(A) = {λ ∈ C : det(A− λI) = 0}, (2.1)

the spectrum of A. In general, a root λ of p(λ) can have a higher multiplicity
and occur more than once in the multiset Λ(A). The multiplicity of λ as a root
of p(λ) is called the algebraic multiplicity of the eigenvalue. An eigenvalue with
algebraic multiplicity 1 is called simple.

If λ ∈ Λ(A) then A − λI is a singular matrix. This implies that there exist
nonzero vectors x that satisfy Ax = λx. This was our original problem
formulation at the beginning of Chapter 1. The vector x is then called a (right)
eigenvector. A left eigenvector x∗ satisfies similarly x∗A = λx∗. The subspace
Sλ ⊆ Fn generated as the linear span of all eigenvectors related to a single
eigenvalue λ is called the eigenspace of λ. The dimension of Sλ is called the
geometric multiplicity of λ. It is equal to the dimension of the nullspace of
A− λI. The algebraic multiplicity of an eigenvalue is larger than or equal to
the geometric multiplicity. If the algebraic multiplicity of λ is strictly larger
then the geometric multiplicity, the eigenvalue is called defective.

A subspace X ⊆ Fn is called a (right) invariant subspace of A if AX ⊆ X . If X
is of dimension k and we consider the matrix X ∈ Fn×k whose columns form a
basis for the k-dimensional invariant subspace X , then there exists a matrix
A|X ∈ Fk×k such that,

AX = XA|X . (2.2)

It follows from (2.2) that Λ(A|X) ⊆ Λ(A). The matrix A|X is unique and is
called the representation of A with respect to X. An explicit expression for
A|X is given by

A|X = X†AX. (2.3)

The matrix X† is called the Moore-Penrose pseudoinverse of X and because
X is of maximal rank k, X† = (X∗X)−1X∗ [46] from which it follows that
X†X = Ik and (2.3) is immediate.

In case the invariant subspace under consideration is the entire n-dimensional
vector space, i.e. X = Fn, we have that X ∈ Fn×n is nonsingular and
consequently A|X = X−1AX. The matrices A and A|X are called similar
in this case and the transformation is called a similarity transformation. A
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similarity transformation has the property that it preserves the eigenvalues,
Λ(A|X) = Λ(A), and can be regarded as a change of basis.

If A, X, and A|X satisfy (2.2) then there exists a unitary matrix Q ∈ Fn×n
such that,

Q∗AQ =
[
T11 T12

T22

]
, (2.4)

with T11 ∈ Fk×k and Λ(T11) = Λ(A|X). The matrix Q = [Q1 Q2] can be
computed from the QR factorization of X with Q1 a unitary basis for X and
Q2 for its orthogonal complement. This idea can be used to go from the block
triangular form of (2.4) to the triangular form of the Schur decomposition using
inductive reasoning.

Theorem 2.1.1 (Schur Decomposition). Let A ∈ Fn×n. Then there exists a
unitary matrix Q ∈ Fn×n such that,

Q∗AQ = T, (2.5)

where T ∈ Fn×n is an upper triangular matrix having the eigenvalues of A on
its diagonal. The unitary similarity transformation Q can be chosen such that
the eigenvalues appear in any order on the diagonal of T .

As R is not algebraically closed, it follows from (2.1) that a real-valued matrix
can have eigenvalues with nonzero imaginary part. However, these complex
eigenvalues do come in conjugate pairs α± ıβ. The Schur decomposition (2.5)
of a real matrix will thus be complex unless the matrix only has real eigenvalues.
In order to avoid the computationally more expensive complex arithmetic and
because the problem is a real-valued problem, the real Schur decomposition is
typically used for real-valued matrices.

Theorem 2.1.2 (real Schur Decomposition). Let A ∈ Rn×n. Then there exists
an orthogonal matrix Q ∈ Rn×n such that,

QTAQ = T =


T11 T12 . . . T1k

0 T22
. . . T2k

...
. . .

. . .
...

0 . . . 0 Tkk

 , (2.6)

where the diagonal blocks Tii, i=1, . . . , k, are of dimension 1×1 for real
eigenvalues and 2×2 for complex conjugate eigenvalues. The orthogonal
similarity transformation Q can be chosen such that the eigenvalue blocks appear
in any order on the diagonal of T .
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Assume λ=α+ıβ is a complex eigenvalue of A ∈ Rn×n with complex eigenvector
x = x1 + ıx2, x1,x2 ∈ Rn. Then by construction,

A(x1 + ıx2) = (α+ ıβ)(x1 + ıx2) = (αx1 − βx2) + ı(βx1 + αx2).

Rearranging the equation in matrix terms gives,

A
[
x1 x2

]
=
[
x1 x2

] [ α β
−β α

]
.

Notice that the above is a relation of the form (2.2) and that x1 must be linear
independent of x2 as otherwise β = 0. This implies that X = [x1 x2] is a basis
for the invariant subspace related with eigenvalues λ, λ̄. Using a change of
basis from X to an orthonormal basis of the invariant subspace and applying
decompositions of the form (2.4), one can prove the existence of the real Schur
form (2.6).

The purpose of the QR algorithm is to compute the Schur form (2.5) for complex-
valued matrices or the real Schur form (2.6) for real-valued matrices. Before we
turn our attention to computational methods, we first introduce the generalized
eigenvalue problem.

2.1.2 The generalized eigenvalue problem

The generalized eigenvalues of a pair of matrices A,B ∈ Fn×n are denoted as
Λ(A,B) and defined by,

Λ(A,B) = {λ = α/β ∈ C̄ : det(βA− αB) = 0}, (2.7)

with C̄ = C ∪ {∞}. The matrix pair is denoted as (A,B) and is often also
referred to as a matrix pencil A− λB. We will use both terms interchangeably.
Analogous to the standard eigenvalue problem, x is called a (generalized) right
eigenvector corresponding to λ = α/β if,

βAx = αBx. (2.8)

Computing the pairs (λ = α/β,x) is the objective of the generalized eigenvalue
problem. If (2.8) is, for a given x, satisfied for β = 0, then the corresponding
eigenvalue of (A,B) is located at ∞.

Throughout this thesis we assume that the pair (A,B) is regular which means
that its characteristic polynomial det(A−λB) differs from zero. Indeed, a matrix
pair (A,B) can have a characteristic polynomial that vanishes everywhere. One
such case occurs if A and B have a common nullspace. In that case there exists a
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nonzero vector x for which Ax = Bx = 0 which implies that (βA−αB)x = 0 for
all values α, β and the characteristic polynomial is equal to the zero polynomial.
Pencils that are not regular are called singular. For regular pencils det(A− λB)
has exactly n roots in C̄ counting multiplicities.

In case B is a nonsingular matrix, (2.8) can be transformed to B−1Ax = λx
and we end up with a standard eigenvalue problem for which the theory of
Section 2.1.1 applies and the QR method can be used. The same is possible
when A is nonsingular. However, from a numerical point of view this is a poor
idea as B can be nonsingular but still be ill-conditioned with respect to inversion.
If that is the case, then computing the eigenvalues of B−1A can be sensitive
even when the generalized eigenvalues themselves are well-conditioned. This
motivates the study of the generalized eigenvalue problem (2.8).

An important concept is the notion of a pair of deflating subspaces. This
can be seen as the generalization of the invariant subspace (2.2). A pair of
k-dimensional subspaces X ,Y ⊆ Fn is called a pair of right deflating subspaces
of the regular n×n matrix pair (A,B) if for any matrices X,Y ∈ Fn×k whose
columnspace are respectively equal to X and Y, we have that:

(A,B)Y = X(A,B)|(X,Y ). (2.9)

Here, the shorthand notation (A,B)Y = (AY,BY ) is used and (A,B)|(X,Y ) is
the unique k×k matrix pair:

(A,B)|(X,Y ) = X†(A,B)Y.

It follows that Λ((A,B)|(X,Y )) ⊆ Λ(A,B). A subspace Y ⊆ Fn is part of a right
deflating pair for the regular pair (A,B) if and only if [113, Definition 5.1],

dim(AY +BY) = dim(Y). (2.10)

In the case that X ,Y are equal to the entire n-dimensional vector space
Fn, we have that X,Y ∈ Fn×n and (A,B)|(X,Y ) = X−1(A,B)Y . In this
case, the matrix pairs (A,B)|(X,Y ) and (A,B) are called equivalent. The
transformation is called an equivalence transformation and it preserves the
eigenvalues: Λ((A,B)|(X,Y )) = Λ(A,B).

A pair of subspaces is called left deflating for (A,B) if it is right deflating for
(A∗, B∗).

If (A,B), X, Y , and (A,B)|(X,Y ) satisfy (2.9) then there exist unitary matrices
Q,Z ∈ Fn×n such that,

Q∗(A,B)Z =
([
S11 S12

S22

]
,

[
T11 T12

T22

])
, (2.11)
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where (S11, T11) is a k×k matrix pair having Λ(S11, T11) = Λ((A,B)|(X,Y )).
The matrix Q = [Q1 Q2] can be computed from the QR factorization of X with
Q1 a unitary basis for X and Q2 for X⊥. Similarly, the matrix Z = [Z1 Z2] can
be computed from the QR factorization of Y with Z1 a unitary basis for Y and
Z2 for Y⊥.

We can go from the block triangular form of (2.11) to the triangular form of
the generalized Schur decomposition using inductive reasoning.

Theorem 2.1.3 (generalized Schur decomposition). Let (A,B) be an n×n
regular matrix pair. Then there exist unitary matrices Q,Z ∈ Fn×n such that,

Q∗(A,B)Z = (S, T ), (2.12)

with (S, T ) an n×n regular, upper triangular matrix pair having the eigenvalues
of (A,B) as the ratios of its diagonal elements sii/tii, i = 1, . . . , n. The unitary
equivalence transformation can be chosen such that the eigenvalues appear in
any order on the diagonals of (S, T ).

For real-valued matrix pairs, the real generalized Schur decomposition is typically
used to avoid complex arithmetic for complex-conjugate pairs of eigenvalues.

Theorem 2.1.4 (real generalized Schur decomposition). Let (A,B) be an
n×n real-valued, regular matrix pair. Then there exist orthonormal matrices
Q,Z ∈ Fn×n such that,

QT (A,B)Z = (S, T ) =



S11 S12 . . . S1m

0 S22
. . . S2m

...
. . .

. . .
...

0 . . . 0 Smm

 ,

T11 T12 . . . T1m

0 T22
. . . T2m

...
. . .

. . .
...

0 . . . 0 Tmm


 , (2.13)

where the diagonal subpencils (Sii, Tii), i = 1, . . . ,m are of dimension 1×1 or
2×2 and correspond with respectively the real and complex conjugate eigenvalues
of (A,B). The orthonormal equivalence transformation can be chosen such that
the eigenvalues appear in any order along the diagonal.

A final useful definition is the notion of a zero of a (rectangular) n1× n2 matrix
pencil A− λB. This is also known as a Smith zero [41,121] or an invariant zero
of a linear time invariant system in systems and control theory [37].

We limit our explanation to the case of pencils of full normal rank, more detailed
characterizations of the zero structure of general pencils can be found in [41,121].
A pencil A− λB is said to be of full normal rank if the generic rank of A− λB
is min(n1, n2). Equivalently this means that the Kronecker indices of A− λB
are zero [121].
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Definition 2.1.5. Let A−λB be an n1×n2 matrix pencil of full normal rank.
A scalar ζ ∈ C̄ is called a zero of A− λB if rank(A− ζB) < min(n1, n2).

For regular, square pencils the zeros and eigenvalues coincide.

2.2 Krylov subspace methods

We have characterized the standard and generalized eigenvalue problems in
the previous section and discussed the existence of an eigenvalue revealing
(generalized) Schur decomposition. Thus far we have ignored the problem of
how to compute these decompositions and a satisfactory answer to this question
will only be provided in Section 2.3. The central topic in this section are Krylov
subspaces and the accompanying Krylov subspace methods for the eigenvalue
problem such as the Arnoldi [3] and Lanczos [73] methods. From a numerical
linear algebra perspective, the Arnoldi, Lanczos, and derived methods are most
often used to compute a selected subset of eigenvalues of a large, often sparse,
matrix. We will discuss why Krylov subspace methods are useful for large-scale
eigenvalue problems. Our second motivation to study them is the central role
they play in the theoretical analysis of the QR method in Section 2.3.

Suppose the matrix A ∈ Fn×n is nondefective meaning that it does not have any
defective eigenvalues. This means that it has n linear independent eigenvectors
x1, . . . ,xn that are a basis of Fn and that A can be diagonalized. Furthermore
assume that A has a dominant eigenvalue such that the eigenvalues can be
sorted as |λ1| > |λ2| ≥ . . . ≥ |λn|. Let v =

∑n
i=1 αixi ∈ Fn then

Akv =
n∑
i=1

λki αixi = λk1

n∑
i=1

(
λi
λ1

)k
αixi,

for k = 1, 2, . . .. It follows that the sequence of vectors,

v, Av, A2v, A3v, . . . , (2.14)

converges to the dominant eigenvector x1 of A with a linear convergence rate
|λ2/λ1| < 1 under the mild assumption that α1 6= 0. This idea is the basis for
the simple power method to compute the dominant eigenvector and eigenvalue
of A.

The vectors in the sequence (2.14) are called the Krylov vectors and the linear
span of all vectors combined is known as a Krylov subspace which forms the
basis for many iterative methods in numerical linear algebra. They are named
after Russian naval engineer and applied mathematician Alexei Krylov who first
introduced the idea in 1931 [68].
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Definition 2.2.1 (Krylov subspace). Themth order Krylov subspace generated
by the matrix A ∈ Fn×n and nonzero starting vector v ∈ Fn is denoted by
Km(A,v) and defined as,

Km(A,v) = R
(
v, Av, . . . , Am−1v

)
. (2.15)

Definition 2.2.1 introduced the R(·)-operator which represents the subspace
generated by the linear span of its arguments. These arguments can be either
vectors, as in (2.15), or a matrix in which case R(A) is considered as the linear
span of columns of A, i.e. its column space.

The subspace Km(A,v) is equal to the subspace of all vectors pm−1(A)v with
pm−1 ∈ Pm−1, the vector space of all polynomials of degree not greater than
m−1. For this reason, we also refer to (2.15) as a polynomial Krylov subspace.

There exists a positive integer g, n ≥ g ≥ 1, called the grade of v with respect
to A, for which dim(Kg(A,v)) = dim(Kg+1(A,v)) = g. If v is an eigenvector
of A, then g = 1. On the other hand, g is not greater than n since n+1 vectors
in Fn are linear dependent. When the grade is reached

Agv =
g−1∑
i=1

αiA
iv,

for some coefficients αi. This can be rewritten as

p(A)v := Ag −
g−1∑
i=1

αiA
iv = 0,

where p is the minimal polynomial of v with respect to A1. The grade g is, by
construction, equal to the degree of this minimal polynomial of v with respect
to A [78].

Krylov subspaces form a sequence of strictly nested subspaces up until order g,

K1 ⊂ K2 ⊂ . . . ⊂ Kg = Kg+1 = . . . = Kn, (2.16)

and they become an invariant subspace of A at order g.

Lemma 2.2.2 (Properties of Krylov subspaces). Let A ∈ Fn×n, v ∈ Fn \
{0}, and m a strictly positive integer. Krylov subspaces satisfy the following
elementary properties:

1This is different from the characteristic polynomial of A, which we introduced at the
beginning of Section 2.1.1 and is often also referred to as the minimal polynomial of A. The
grade g is not greater than the degree of the characteristic polynomial of A.



KRYLOV SUBSPACE METHODS 17

I. Scale invariance: For α, β 6= 0,

Km(A,v) = Km(αA, βv), (2.17)

II. Shift invariance: For any scalar %,

Km(A,v) = Km(A+ %I,v), (2.18)

III. Change of basis: Given a nonsingular matrix X ∈ Fn×n,

Km(A,v) = XKm(X−1AX,X−1v). (2.19)

IV. Expansion:
AKm(A,v) ⊆ Km+1(A,v). (2.20)

The proof of the first, third and fourth property is trivial using Definition 2.2.1.
The second property is a corollary of the isomorphism between Km(A,v) and
{pm−1(A)v : pm−1 ∈ Pm−1}.

An evident matrix whose column space is a Krylov subspace is the Krylov
matrix:

Definition 2.2.3 (Krylov matrix). The mth order Krylov matrix generated
by A ∈ Fn×n and v ∈ Fn \ {0} is denoted by Km(A,v) and defined as,

Km(A,v) =
[
v, Av, . . . , Am−1v

]
. (2.21)

Properties I and II from Lemma 2.2.2 do not translate to Krylov matrices, but
property III is valid for Krylov matrices:

Km(A,v) = XKm(X−1AX,X−1v), (2.22)

and also property IV can be reformulated for a Krylov matrix in the following
sense [120]:

AKm(A,v) = Km+1(A,v)I(m+1)×m, (2.23)

with,

I(m+1)×m =
[
0T
Im

]
=

1
. . .

1

 =
[
e2 . . . em+1

]
∈ F(m+1)×m, (2.24)

an m×m identity matrix prepended with an additional row of zeros.
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2.2.1 Orthonormal Krylov bases and Hessenberg matrices

From a numerical point of view, computing the Krylov matrix as a basis for a
Krylov subspace is a poor idea. The vectors Aiv tend to converge to the direction
of the dominant eigenvector as we have seen previously. The matrix Km(A,v)
can rapidly become ill-conditioned as a result. A frequently used strategy in
numerical linear algebra is to use an orthonormal basis instead. For unsymmetric
matrices this results in the Arnoldi method [3] and the Lanczos method [73] is
the variant for symmetric problems. Our focus is on the unsymmetric case and
we will give a brief introduction of the method of Arnoldi. First, we study the
matrix structure that (orthogonal) bases of Krylov subspaces impose. To this
end let us first define the upper Hessenberg matrix which plays a central role in
the QR method(s) discussed in this thesis.

Definition 2.2.4 (upper Hessenberg matrix). A matrix H ∈ Fn×n is called an
upper Hessenberg matrix if it has no nonzero entries below its first subdiagonal.
An upper Hessenberg matrix is called unreduced or proper if hi+1,i 6= 0 for
i = 1, . . . , n− 1.

An example of a proper Hessenberg matrix is given by the leading m×m part of
I(m+1)×m in (2.24). In the following theorem, we present some further results
on the connection between Krylov matrices and upper Hessenberg matrices.

Theorem 2.2.5. The following relations between Krylov matrices and proper
Hessenberg matrices hold:

I. Let A ∈ Fn×n and v ∈ Fn \ {0} be a vector with grade g ≤ n with respect
to A. For m = 1, . . . , g, consider the thin QR decomposition of the mth
order Krylov matrix,

Km(A,v) = QmRm (2.25)
Then Hm = Q∗mAQm ∈ Fm×m is a proper upper Hessenberg matrix.

II. On the other hand, let H ∈ Fn×n be a proper Hessenberg matrix, then for
m = 1, . . . , n,

Km(H, e1) = R̃m ∈ Fn×m, (2.26)
is an upper triangular matrix with nonzero diagonal entries, i.e. r̃ii 6= 0
for i = 1, . . . ,m.

Proof. We first prove part I. As m ≤ g the rank of Km(A,v) is m and Rm is a
nonsingular upper triangular having rii 6= 0 for i = 1, . . . ,m. Denote,

Km+1(A,v) = Qm+1Rm+1 =
[
Qm qm+1

] [Rm rm+1
rm+1,m+1

]
,
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with rm+1,m+1 6= 0 if and only if m < g. Plugging these expressions in (2.23)
we get:

AQmRm =
[
Qm qm+1

] [Rm rm+1
rm+1,m+1

]
I(m+1)×m.

From which it follows that:

Q∗mAQm =
[
Rm rm+1

]
I(m+1)×mR

−1
m .

It remains to verify that the matrix on the right-hand side is indeed proper
upper Hessenberg. Using (2.24), we have that:[

Rm rm+1
]
I(m+1)×mR

−1
m =

[
Rm rm+1

] [
e2 . . . em+1

]
R−1
m

=
[
Rm(1:m, 2:m) rm+1

]
R−1
m ,

which is a proper Hessenberg matrix because Rm is nonsingular upper triangular.
Right multiplication with the upper triangular matrix R−1

m preserves the upper
Hessenberg structure.

Part II trivially holds for m = 1. Assume, as an induction hypothesis, that
(2.26) holds up to index i− 1, with 1 ≤ i ≤ n− 1. For index i we get:

Ki(H, e1)ei = Hi−1e1 = H(Hi−2e1) = HKi−1(H, e1)ei−1 = HR̃mei−1.

By the induction hypothesis, we have that R̃mei−1 is a vector with only nonzero
entries in its first i− 1 rows and with r̃i−1,i−1 6= 0. Consequently, HR̃mei−1 is
a linear combination of the first i− 1 columns of H with a nontrivial component
in column i− 1 meaning that r̃i,i 6= 0 by the properness of H.

The following is a direct corollary of part II of Theorem 2.2.5 but rephrased in
terms of the corresponding Krylov subspace.

Corollary 2.2.6. Let H ∈ Fn×n be a proper Hessenberg matrix, then for
m = 1, . . . , n,

Km(H, e1) = Em, (2.27)

with Em = R(e1, . . . , em).

2.2.2 Arnoldi’s iterative method

Theorem 2.2.5 shows that orthonormal bases of Krylov subspaces impose a
Hessenberg structure. The Arnoldi method [3], summarized in Algorithm 1, is
an iterative procedure that gradually constructs an orthonormal basis of the
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Krylov subspace Km+1(A,v) along with the Hessenberg representation of A in
the Krylov basis.

The Arnoldi method has been studied extensively for the use of large-scale
eigenvalue problems. Notable results are due to Saad [102–105], Paige [86,87],
Cullum [23,24], Walker [131], and Wilkinson [141].

Algorithm 1 Arnoldi’s method [3]
Input: A, v, m Output: Vm+1, Hm

1: Start: v1 ← v/ ‖v‖2
2: Iterate:
3: for j = 1, . . . ,m do
4: vj+1 ← Avj . Matrix-vector product
5: for i = 1, . . . , j do . modified Gram-Schmidt
6: hi,j ← v∗i vj+1
7: vj+1 ← vj+1 − hi,jvi
8: end for
9: hj+1,j ← ‖vj+1‖2 . normalize

10: vj+1 ← vj+1 / hj+1,j
11: end for

The only time the matrix A is referenced during Algorithm 1 is in the matrix-
vector product carried out in line 4 at the beginning of the main loop in the
algorithm. Because of this, the Arnoldi method is well suited for sparse, large
scale matrices and for structured matrices for which a matrix-vector product
can be computed efficiently. The matrix does not need to be known explicitly to
run the Arnoldi method. A function that returns the result Av for any vector
v suffices.

The next computational part of the Arnoldi method is a pass of the modified
Gram-Schmidt procedure which starts in line 5. The idea behind Gram-Schmidt
is straightforward. Given two vectors x,y of unit norm, the vector ŷ =
y − (x∗y)x is the orthogonalization of y with respect to x. Indeed, x∗ŷ =
x∗y − (x∗y)x∗x = 0. Modified Gram-Schmidt, as stated in Algorithm 1,
displays better numerically stability than the regular Gram-Schmidt procedure.
Nonetheless, sometimes a second pass of modified Gram-Schmidt is required
to ensure numerically orthogonal vectors in finite precision arithmetic [43].
The Gram-Schmidt orthogonalization has computational complexity O(m2n).
The growth is quadratic in the number of Krylov vectors. Restarted Krylov
subspace methods [75,111,112] are often used in practice to limit the number
of Krylov vectors thereby limiting the storage and computational requirements.
We discuss restarted rational Krylov methods in detail in Chapter 7.
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Taking a close look at Algorithm 1, it is not difficult to see that the following
recurrence relationship is satisfied at iteration j,

Avj =
j+1∑
i=1

hi,jvi. (2.28)

Combining iterations j = 1, . . . ,m of (2.28), we get the matrix relation,

AVm = Vm+1Hm, (2.29)

which is the well-known Arnoldi recurrence relationship. The matrix Vm+1 ∈
Fn×(m+1) is the orthonormal basis of Km+1(A,v) and Hm ∈ F(m+1)×m is
the upper Hessenberg representation of A in the orthonormal Krylov basis.
The matrix Hm is constructed from the orthonormalization coefficients and
is a proper upper Hessenberg matrix as long as the vector vj+1 in line 9 of
Algorithm 1 is a nonzero vector. The pair (Vm+1, Hm) is referred to as an
Arnoldi pair and is called proper if Hm is proper. The leading m×m part of
Hm is denoted as Hm.

If ‖vj+1‖2 becomes numerically zero in line 9, the Arnoldi method experiences
a lucky breakdown. As the name suggests, this is positive since the Arnoldi
recurrence reduces to AVm = VmHm which is a relation of the form (2.2),
implying that the Krylov subspace becomes an invariant subspace of A and the
eigenvalues of Hm form a subset of Λ(A).

A lucky breakdown occurs in exact arithmetic when m reaches the grade of A
with respect to v. In practice, Arnoldi’s method is rarely continued until an
invariant subspace is obtained. Instead eigenvalue approximations are extracted
from Krylov subspaces of smaller dimension. This is the topic of the next part.

Galerkin and Petrov-Galerkin projections on Krylov subspaces

The Arnoldi method is a projection method in the sense that it projects the
large-scale problem onto a lower-dimensional Krylov subspace and searches
for approximate solutions in this lower-dimensional subspace. Two different
projection conditions, known as the Galerkin and Petrov-Galerkin conditions,
have been proposed in the literature. These conditions are formally defined in
Definition 2.2.7, independent from the kind of problem and type of subspace.

Definition 2.2.7. Let V,W be two m-dimensional subspaces of Fn, z ∈ V an
approximate solution with residual vector r(z). Then z is called a Galerkin
approximate solution if:

r(z) ⊥ V, (2.30)
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and a Petrov-Galerkin approximate solution if:

r(z) ⊥ W. (2.31)

The Galerkin condition implies that the solution and constraint subspaces are
both equal to the same subspace V. This leads to an orthogonal projection
method. In the Petrov-Galerkin condition, the solution subspace is V while
the constraint subspace is some other subspace W. This results in an oblique
projection method [106].

Let us use Definition 2.2.7 to derive eigenvalue approximations based on the
Arnoldi method (2.29). We will deduce two commonly used strategies to
extract approximate eigenvalues from (2.29). Observe that when searching for
approximate eigenvalues, the residual vector in Definition 2.2.7 reduces to:

r(z) = Az − ϑz, (2.32)

with ϑ the approximate eigenvalue.

Lemma 2.2.8. Given a proper Arnoldi pair (Vm+1, Hm) related to the Krylov
subspace Km+1(A,v) and satisfying an Arnoldi decomposition (2.29). Imposing
a Galerkin condition (2.30) with V = Km(A,v) leads to the Ritz pairs (ϑ, z =
Vmym) characterized by the eigenvalue problem,

Hmym = ϑym. (2.33)

Imposing a Petrov-Galerkin condition (2.31) with V = Km(A,v), W = (A −
τI)Km(A,v), τ /∈ Λ(Hm), leads to the τ -harmonic Ritz pairs (ϑ, z = Vmym)
characterized by the eigenvalue problem,

H̃τ
mym = ϑym, (2.34)

with H̃τ
m = Hm + |hm+1,m|2fτmeTm, fτm = (Hm − τIm)−∗em.

Proof. For the Galerkin approximation, we have z ∈ Km(A,v) thus z = Vmym
for some ym ∈ Cm. Furthermore, we have the orthogonality constraint:

r(z) ⊥ Km(A,v)

⇔ AVmym − ϑVmym ⊥ Vm

⇔ V ∗m(Vm+1Hmym − ϑVmym) = 0

⇔ (Hm − ϑIm)ym = 0.

(2.35)
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The second equation explicitly rewrites the first in terms of the basis Vm+1,
the third equation used (2.29) and rewrote the orthogonality constraint as an
inproduct. The last equation follows immediately from the orthonormality of
Vm. For the Petrov-Galerkin approximation, we still have z = Vmym, but the
orthogonality constraint changes to:

r(z) ⊥ (A− τI)Km(A,v)

⇔ AVmym − ϑVmym ⊥ (A− τI)Vm

⇔ Vm+1(Hm − ϑIm)ym ⊥ Vm+1(Hm − τIm)

⇔ (Hm − τIm)∗(Hm − ϑIm)ym = 0.

(2.36)

Here, Im is the m×m identity matrix appended with an additional row of zeros.
The last equation corresponds to the small-scale generalized eigenvalue problem,

(Hm − τIm)∗Hmym = ϑ(Hm − τIm)∗Imym.

Left multiplication of both sides with2 (Hm − τIm)−∗ results in (2.34),
considering that:

(Hm − τIm)−∗(Hm − τIm)∗ =
[
Im h̄m+1,m(Hm − τIm)−∗em

]
.

We refer to Hm as the Galerkin projection of A on Km(A,v) and to H̃τ
m as

the Petrov-Galerkin projection of A on (A− τI)Km(A,v). The corresponding
eigenvalue approximations are referred to as respectively Ritz and τ -harmonic
Ritz values. If the target τ is chosen at zero, the latter are called harmonic Ritz
values. We remark that H̃τ

m is a proper upper Hessenberg matrix as it only
differs from Hm in its last column.

Ritz and τ -harmonic Ritz pairs often provide accurate approximations to some
eigenvalues of A long before the theoretical grade is reached. The accuracy of
the Ritz pairs can be assessed from their residual vector which, from (2.35), is,

r = hm+1,mvm+1eTmym, (2.37)

and has norm ‖r‖2 = |hm+1,m||eTmym|. Ritz values tend to first converge to
well-separated and extreme eigenvalues of A [70, 71].

Figure 2.1 illustrates the convergence of Ritz values with a numerical experiment
on a 100× 100 symmetric matrix with eigenvalues in [11, 29] ∪ {39}.

2The condition τ /∈ Λ(Hm) ensures that the inverse exists.
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Figure 2.1: Convergence of the Arnoldi method compared with the convergence
of the power method to the dominant eigenvalue (left) and convergence of all
Ritz values in the Arnoldi method (right).

The dashed line on the left side of Figure 2.1 shows the convergence of the
power method to the dominant eigenvalue at 39 in function of the iteration
step m. The convergence of the largest Ritz value ϑ1 in function of the Krylov
subspace dimension m to the dominant eigenvalue is shown with the full line.
Both methods used the same starting vector. Using all information from the
Krylov vectors significantly improves the convergence rate in comparison with
the power method. The right hand side of Figure 2.1 shows a so-called Ritz plot
that summarizes the convergence of all Ritz values in function of the subspace
dimension m. The y-axis shows the value of the m Ritz values computed
from the Krylov subspace of dimension m. The Ritz values themselves are
indicated with ×-markers and their color indicates the accuracy of the Ritz
value according to the color code in Table 2.1.

Table 2.1: Color code for Ritz plots

Accuracy |λ− ϑ| Color[
∞; 10−2.5) blue[
10−2.5; 10−5) green[
10−5; 10−7.5) yellow[
10−7.5; 0

]
red

The Ritz plot illustrates the typical convergence behavior: the extreme
eigenvalue at 39 is found up to reasonable precision within 10 iterations and
from m ≈ 20 onwards the eigenvalues in the large cluster at [11, 29] are found
starting from the outside of the cluster and gradually converging to the interior
eigenvalues.
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Figure 2.2: Convergence of harmonic Ritz values (left) and τ -harmonic Ritz
values with τ = 20.25 (right).

The extreme eigenvalues are not always the eigenvalues of interest for the
problem at hand and the (restarted) Arnoldi method might require a prohibitive
number of iterations before converging to the desired eigenvalues. τ -Harmonic
Ritz values have been shown to be able to provide more accurate approximations
in the interior of the spectrum [85]. However, both Ritz and τ -harmonic Ritz
values start from the same subspace Km+1(A,v). Figure 2.2 shows a Ritz plot
for harmonic and τ -harmonic approximations (τ = 20.25, interior of spectrum)
for the same matrix as Figure 2.1.

If, in the numerical example, we are interested in the eigenvalues in the
neighborhood of 20, the Arnoldi method is impractical as it only converges to
these eigenvalues for m ≈ n. Computing the Ritz values requires in this case
the solution of an eigenvalue problem with a dimension that is close to the
original problem size.

The last decades, a lot of generalizations of the Arnoldi method were proposed
that allow for faster convergence to a selected region of eigenvalues in the
complex plane. We will discuss two of these generalizations, called the extended
and rational Krylov methods in Chapter 7. In the next section we first study
Francis’ QR method that can be used to compute all eigenvalues of an upper
Hessenberg matrix. This can, for example, be the Arnoldi Hessenberg matrix
Hm.
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2.3 The implicit QR method

The implicit QR algorithm [39,40,69] can be used to compute the Schur (2.5)
or real Schur decomposition (2.6) of an upper Hessenberg matrix H. In order
to compute the Schur decomposition of a general dense matrix A ∈ Fn×n with
the implicit QR algorithm, the matrix first needs to be reduced to an upper
Hessenberg matrix via a similarity transformation. This reduction can, in theory,
be computed with the Arnoldi method as it iteratively constructs an upper
Hessenberg matrix that is, under the assumption that breakdown only occurs
in step n, unitarily similar to A. This is never done in practice for reasons
of numerical stability and because the computational cost is prohibitive. A
better idea is to explicitly create zeros in A by a sequence of unitary similarity
transformations. Section 2.3.1 reviews the Householder and core transformations
that can be used for this task. Section 2.3.2 describes the implicit QR method in
detail and Section 2.3.3 the implicit QZ method [83] to compute the generalized
(real) Schur decomposition of a regular matrix pair (A,B).

2.3.1 Creating zeros in matrices

The first type of unitary transformation useful to introduce zeros in a matrix is
the Householder reflector.

Definition 2.3.1 (Householder reflector). Given a nonzero vector v ∈ Fn, the
unitary matrix P given by:

P = I − 2vv∗

v∗v
, (2.38)

is called a Householder reflector.

A Householder reflector is clearly Hermitian, P = P ∗, and is also unitary,
P ∗P = I. For any nonzero vector x ∈ Fn that is not a scalar multiple of e1 it
is possible to construct an appropriate vector v ∈ Fn such that the associated
Householder reflector P has the property:

Px = σ‖x‖2e1, with |σ| = 1. (2.39)

To achieve the desired result, the vector v needs be of the form,

v = x + σ‖x‖2e1, (2.40)

with |σ| = 1. For reasons of numerical accuracy the choice σ = sign(x1) is made
in most implementations.
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Householder reflectors have the advantage that they can be easily computed
based on (2.40) and that they can be applied to an arbitrary vector in O(n)
operations using (2.38) without the need to form P explicitly. Furthermore, they
lead to backward stable algorithms given that they are unitary transformations.
They can also be used to zero out part of a vector by embedding them in a
larger matrix, e.g.,

Q =
[
In−k

Pk

]
, (2.41)

can be used to zero out the last k−1 entries of a vector of size n.

A second class of matrices that can be used to create zero elements in a matrix
are called core transformations.
Definition 2.3.2 (Core transformation). A core transformation, Ci ∈ Fn×n,
acting on two consecutive rows i and i+ 1 is the embedding of a nonsingular
2×2 matrix at rows and columns i and i+ 1 of the identity matrix:

Ci =


Ii−1

× ×
× ×

In−i−1

 . (2.42)

Throughout this thesis, we mostly consider unitary core transformations in
which case the active 2×2 block in (2.42) can, for example, be chosen as a
rotation matrix: [

c −s̄
s c̄

]
, with, |c|2 + |s|2 = 1, (2.43)

or as a small Householder reflector.

Given a vector x = [x1 x2]T ∈ F2, it is always possible to compute a unitary
core transformation C1 such that C1x = ‖x‖2e1. Left multiplication of an
n×n matrix with a core transformation Ci only affects rows i and i + 1 of
the matrix, while right multiplication with the same core transformation only
affects columns i and i+ 1. A commonly used graphical representation for core
transformations is by means of a double-sided arrow pointing to the rows or
columns on which it acts. Consider the following basic example:

×
×
×
×�� = ××

× .

In this example the core transformation introduces a zero in position (2, 1) of
the 2× 2 matrix which brings it to upper triangular form. This can be used to
compute the QR decomposition.
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The numerical properties of unitary core transformations are as favorable
as these of Householder transformations. The major difference is that core
transformations are typically used to create zeros in targeted positions,
potentially without destroying existing structure. Householder transformations,
on the other hand, are useful to create many zeros simultaneously and they are
computationally more efficient for a generic, dense QR decomposition compared
to core transformations [46, Section 5.2]. More details on core transformations
are provided in Appendix A. Core transformations have been studied extensively
in the context of QR-type methods [4, 123,129,130]. We will mainly make use
of them in Chapter 5 as a way to efficiently represent a unitary Hessenberg
matrix.

Unitary Hessenberg reduction

Let us now describe the process of constructing a unitary similarity
transformation to reduce a generic dense matrix to Hessenberg form. Figure 2.3
shows the first step in the algorithm for a 5× 5 matrix.

A

×××××
×××××
×××××
×××××
×××××

I.

A← Q∗1A

×××××
⊗⊗⊗⊗
⊗⊗⊗⊗
⊗⊗⊗⊗
⊗⊗⊗⊗

⊗

II.

A← AQ1

×
×
⊗⊗⊗⊗
⊗⊗⊗⊗
⊗⊗⊗⊗
⊗⊗⊗⊗
⊗⊗⊗⊗

III.

Figure 2.3: Unitary Hessenberg reduction method.

The algorithm starts with computing a Householder transformation Q∗1 that
creates zeros in rows 3 to n of the first column of A. This operation is shown
in pane II of Figure 2.3. The matrix elements that are changed under this
operation are marked with ⊗. Since we require a similarity transformation to
preserve the eigenvalues, the next step is a right multiplication with Q1. Again
the matrix elements that are changed by this transformation are highlighted
with ⊗ in pane III of Figure 2.3. Observe that this does not destroy any zeros
already created by Q∗1 such that we get a matrix that is similar to A but with
its first column in upper Hessenberg form.

The reduction algorithm is continued in the same fashion for the remaining
columns that are not yet Hessenberg form. In step i = 1, . . . , n− 2, the matrix
elements in rows i + 2 up to n of column i are set to zero by a Householder
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reflector Q∗i and the similarity is preserved by right multiplication with Qi.
This algorithm computes an overall similarity transformation:

H = Q∗n−2 . . . Q
∗
1︸ ︷︷ ︸

Q∗

AQ1 . . . Qn−2︸ ︷︷ ︸
Q

. (2.44)

This is the basic version of the Hessenberg reduction algorithm which has
a computational cost of O(10n3/4) operations if only H is computed and
O(14n3/4) operations if both H and Q are computed [46].

Variants of this algorithm that lead to more efficient implementations have been
proposed in [28,61,91].

2.3.2 Implicit QR

Once our matrix is reduced to Hessenberg form, the iterative phase of the
QR method can commence. Before discussing the implicit formulation of the
algorithm, it is interesting to take a quick look at what the explicit (unshifted)
QR step (1.2) looks like for a Hessenberg matrix. Figure 2.4 shows a graphical
representation of a single iteration.

H = QR

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×

=
��
��
��
��

××
×
×
×
×

×
×
×
×

×
×
×
×
×

I.

Ĥ = RQ

��
��
��
��

××
×
×
×
×

×
×
×
×

×
×
×
×
×

=

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×

II.

Figure 2.4: Explicit QR step on a Hessenberg matrix.

Pane I shows how the unitary matrix in the QR decomposition of an n×n
Hessenberg matrix can be represented by a sequence of n−1 core transformations
in a descending order. Such a representation representation always exists.
Starting from a Hessenberg matrix H, we can compute core transformations C1
up to Cn−1 which create an upper triangular matrix

C∗n−1 . . . C
∗
1H = R.

In this scheme Ci is computed such that it annihilates element hi+1,i. If
the Hessenberg matrix is proper, then all core transformations are nontrivial
meaning that they have a nonzero off-diagonal entry.
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In pane II the order of the upper triangular matrix and sequence of core
transformations is reversed, just as in (1.2). Applying C1 to the upper triangular
is achieved by a multiplication with the first two columns of R, which creates a
nonzero element in position (2, 1). Continuing this process, we again end up
with an upper Hessenberg matrix.

The important conclusion is that the Hessenberg structure is preserved under
a QR step. This means that the initial effort of creating zeros during the
Hessenberg reduction is not in vain: where a single, explicit QR step (1.2) on a
dense matrix requires O(n3) operations, this cost drops to O(n2) for Hessenberg
matrices as their QR decomposition has the structure shown in Figure 2.4 and
can be computed using n−1 core transformations.

Implicit use of shifts

To speed up convergence of the QR method, the Hessenberg matrix is typically
shifted with some well-chosen shift %. The explicit variant then becomes:

H − %I = QR → Ĥ = Q∗HQ = RQ+ %I. (2.45)

The computational cost of a single step in this iteration is still O(n2) since
the Hessenberg structure is preserved under the degree-1 shift polynomial, i.e.
p1(H) = H − %I is an upper Hessenberg matrix that can be computed in O(n)
operations as only its diagonal elements differ from H.

Computing pm(H) for higher degree shift polynomials requires significantly
more than O(n) operations. Given m shifts, %1, . . . , %m, the degree m shift
polynomial,

pm(H) = (H − %1I) . . . (H − %mI), (2.46)
can be used in an explicit QR update as follows:

pm(H) = QR → Ĥ = Q∗HQ. (2.47)

The computation of pm(H) requires m − 1 matrix-matrix products with
Hessenberg matrices, resulting in a computational cost of O(n3) operations.
This is too expensive for a practical algorithm. The approach of (2.46) and
(2.47) has additional disadvantages: it is difficult to maintain real arithmetic
for real-valued matrices and using sets of shifts that are closed under complex
conjugation, it requires additional memory to store pm(H), and the upper
Hessenberg form might not be accurately preserved in (2.47) in finite precision
arithmetic.

Francis’ implicit QR step [40] overcomes all of these disadvantages with an
elegant solution. Assume we have a real-valued matrix H and a pair of complex-
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conjugate shifts %, %̄. The algorithm starts with computing the vector:

x = p2(H)e1 = (H − %̄I)(H − %I)e1, (2.48)

which is just the first column of (2.46) for m = 2. Observe that x only has
nonzero elements in its first 3 rows thanks to the proper Hessenberg structure
of H. It follows from part II of Theorem 2.2.5 that this is valid in general.
With m shifts, the vector x = pm(H)e1, which is part of the column space
of Km+1(H, e1), has nonzero entries in the first m + 1 rows only and can
be computed based on the first m columns of H. The computational cost is
negligible as long as m � n. Furthermore, in our example x is a real-valued
vector since:

(H − %̄I)(H − %I) = (H − %I)(H − %̄I) = (H − %̄I)(H − %I). (2.49)

The next step is to compute an orthonormal matrix Q1 such that:

QT1 x = ±‖x‖2e1. (2.50)

This can be done with a small Householder reflector or with two core
transformations. The details of how the transformation is computed, makes
no mathematical difference as long as (2.50) is satisfied. In both cases, Q1
is essentially a 3 × 3 matrix embedded in the first three rows and first three
columns of an n× n identity matrix.

Now Q1 is used to perform the initial similarity transformation H1 = QT1 HQ1.
This process is shown in Figure 2.5 for a small scale example.
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Figure 2.5: Introducing the perturbation in the Hessenberg matrix.

Left multiplication with QT1 introduces a nonzero element in position (3, 1) of
H. Right multiplication creates additional nonzero elements in positions (4, 1)
and (4, 2). These 3 nonzero elements, indicated with + in pane I of Figure 2.6,
constitute the bulge that has been introduced in H1.

The remainder of the algorithm consists of chasing the bulge in order to restore
the Hessenberg form. This is achieved by a selective Hessenberg reduction where
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the transformations are carefully chosen in order not to introduce additional
nonzero elements. The first step is shown in Figure 2.6 and consists of computing
an orthonormal matrix Q2 which restores the Hessenberg form in the first column
of the matrix by left multiplication. This step is shown in pane II of Figure 2.6
where elements (3, 1) and (4, 1) are zeroed. A similarity transformation is
required to preserve the eigenvalues, so in pane III of Figure 2.6 the matrix
undergoes a right multiplication with Q2. This creates two new nonzero elements
in positions (5, 2) and (5, 3).
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Figure 2.6: Chasing the bulge in the Hessenberg matrix.

We observe that the bulge has moved one position along the subdiagonal in
the direction of the bottom-right corner of the matrix and that no additional
nonzero entries have formed in H2 compared to H1. This procedure is continued
until the bulge is eventually removed from the matrix in the bottom right corner.
This constitutes a single QR sweep of multiplicity 2.

Uniqueness & convergence via a connection with Krylov subspaces

In this section, we discuss how an implicit QR sweep causes convergence of
eigenvalues in the upper Hessenberg matrix H. Our discussion is greatly based
on [138,139].

The following well-known result on the essential uniqueness of the QR
factorization of nonsingular matrices will be useful in the proof of the uniqueness
of the QR method.

Lemma 2.3.3. Let A ∈ Fn×n be a nonsingular matrix and consider the QR
factorizations A = Q̂R̂ and A = Q̌Ř. Then there exists a unitary diagonal
matrix D such that Q̂ = Q̌D.

Proof. We have,

Q̂R̂ = Q̌Ř ⇒ Q̌∗Q̂ = ŘR̂−1 ⇒ Q̌∗Q̂ = D.
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Here the second equality follows from the first by using the unitarity of Q̌ and
the nonsingularity of R̂. The final equality follows from the property that ŘR̂−1

is an upper triangular matrix that must be unitary and hence is a diagonal
matrix.

From the discussion of the QR method in the previous section, it is clear
that an implicit QR sweep with shift polynomial (2.46) constructs a similarity
transformation, Ĥ = Q∗HQ, with:

Qe1 = γpm(H)e1. (2.51)

This follows from (2.48) and (2.50) and the observation that the subsequent
chasing procedure does not alter q1.

The following theorem presents the well-known implicit Q theorem for proper
Hessenberg matrices.

Theorem 2.3.4 (Implicit Q for proper Hessenberg matrices). Let A ∈ Fn×n
and let Q̂, Q̌ ∈ Fn×n be unitary with q̂1 = σq̌1, |σ| = 1 such that,

Ĥ = Q̂∗AQ̂, and, Ȟ = Q̌∗AQ̌,

are both proper Hessenberg matrices. Then, Q̂ = Q̌D and Ĥ = D∗ȞD for some
unitary diagonal matrix D.

Proof. We have,

Q̂Kn(Ĥ, e1) = Q̂Kn(Q̂∗AQ̂, e1) = Kn(A, q̂1)

= σKn(A, q̌1) = σQ̌Kn(Q̌∗AQ̌, e1)

= σQ̌Kn(Ȟ, e1).

The second and fourth equalities applied (2.22). By part II of Theorem 2.2.5,
the above equation shows the equality between two QR factorizations,
Q̂Kn(Ĥ, e1) = σQ̌Kn(Ȟ, e1), with nonsingular upper triangular matrices. It
follows from Lemma 2.3.3 that Q̂ = Q̌D and consequently Ĥ = D∗ȞD.

Theorem 2.3.4 motivates the implicit bulge chasing approach of Francis’
algorithm, the vector q1 is fixed once the shifts are chosen according to (2.51).
The implicit Q theorem thus guarantees that the outcome of an implicit QR
sweep, Ĥ = Q∗HQ, is essentially unique once the shifts are determined. The
essential uniqueness is up to multiplication with a unitary diagonal matrix D
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which does not influence the convergence of the algorithm. This is valid under
the assumption that the Hessenberg matrix remains proper.

If at some stage the matrix becomes improper in the sense that hi+1,i = 0 for
1 ≤ i < n, this is in fact positive as it allows us to split the matrix in smaller
independent problems:

i n− i[ ]
H11 H12 i

H22 n− i
, (2.52)

as the matrix becomes of block upper triangular form.

We have characterized the essential uniqueness of a QR sweep, let us now discuss
the convergence of the method. The following lemma will be useful in the proof
of the main result on convergence given in Theorem 2.3.6.

Lemma 2.3.5. Given A,Q,H ∈ Fn×n with Q unitary and such that H =
Q∗AQ is a proper Hessenberg matrix. Then for m = 1, . . . , n,

Km(A, q1) = QEm. (2.53)

Proof. Combining (2.19) and Corollary 2.2.6 gives:

Km(A, q1) = QKm(Q∗AQ,Q∗q1) = QKm(H, e1) = QEm.

Theorem 2.3.6 (Polynomial acceleration for QR). Assume that H, Ĥ ∈ Fn×n
are both proper Hessenberg matrices that are unitary similar, Ĥ = Q∗HQ, with
the similarity transformation obtained from a single implicit QR sweep with q1
determined by pm(H) as in (2.51). Then, for k = 1, . . . , n,

QEk = pm(H)Ek.

Proof. Using Lemma 2.3.5, the property that H commutes with itself and with
the identity matrix, and Corollary 2.2.6, we get:

QEk = Kk(H, q1) = Kk(H, pm(H)e1) = pm(H)Kk(H, e1) = pm(H)Ek

This theorem allows us to interpret the QR sweep, Ĥ = Q∗HQ, as an effective
procedure for polynomial accelerated nested subspace iteration in combination
with a change of basis [139].
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Let us briefly describe what this means. Subspace iteration can be regarded as a
higher dimensional extension of the power method (2.14). Given A ∈ Fn×n and
a k-dimensional subspace Xk ⊂ Fn, polynomial accelerated subspace iteration
constructs the sequence of subspaces:

Xk, p(A)Xk, p(A)2Xk, p(A)3Xk, . . . , (2.54)

for some polynomial p. Assuming the eigenvalues of p(A) are ordered as

|p(λ1)| ≥ . . . ≥ |p(λk)| > |p(λk+1)| ≥ . . . ≥ |p(λk)|,

the rate of convergence of p(A)iXk to the invariant subspace related to λ1, . . . , λk
is equal to |p(λk+1)|/|p(λk)|. If the polynomial is large in magnitude at
λ1, . . . , λk and small otherwise, then convergence to the invariant subspace
occurs rapidly. This convergence rate is potentially much faster than with a
constant polynomial, i.e. unshifted subspace iteration.

Under the assumptions of Theorem 2.3.6, a QR sweep implicitly performs one
step of nested polynomial accelerated subspace iteration on the special sequence
of subspaces Ek. This means that for k = 1, . . . , n,

Kk(H, e1) = Ek 7→ pm(H)Ek = QEk.

The change of basis, Ĥ = Q∗HQ, maps pm(H)Ek back to Ek.

Typically an adaptive shifting strategy is used in a practical bulge chasing
algorithm. A common choice are the eigenvalues of a trailing submatrix of
the Hessenberg matrix. Francis’ implicit double-shift algorithm [39, 40] for
real Hessenberg matrices uses the eigenvalues of the trailing 2-by-2 submatrix,[ hn−1,n−1 hn−1,n
hn,n−1 hn,n

]
, as shifts. The Wilkinson shift is equal to the Francis shift

closest to hn,n and is often used in a single-shift algorithm [45].

Both strategies typically lead to quadratic convergence of eigenvalues and
invariant subspaces for which the shift polynomial is chosen. Because of the
change of basis, this invariance translates to a deflation in the Hessenberg matrix
like in (2.52). The converged eigenvalues will split from the rest of the matrix
in the trailing k×k block. Repeated application of this process gradually drives
the matrix to (real) Schur form.

2.3.3 Implicit QZ

Where the QR method is the method of choice to compute the Schur (2.5)
or real Schur (2.6) decomposition of a general unsymmetric matrix, the QZ
method [83] is the method of choice to reduce a regular unsymmetric matrix
pair to generalized Schur (2.12) or generalized real Schur (2.13) form.
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The QZ method consists conceptually of 2 phases, just as the QR algorithm:

I. A direct reduction of the matrix pair (A,B) to an equivalent Hessenberg,
triangular matrix pair (H,R).

II. An iterative phase during which deflating subspaces of the matrix pair
(H,R) are determined and the matrix pair is essentially reduced to the
triangular, triangular pair (S, T ).

Various modifications and additions to the original algorithm have been proposed
after its original introduction. Kaufman [62] added a deflation strategy and
Ward [132] further refined various aspects of the method. Watkins & Elsner [140]
generalized the QZ algorithm to a class of GZ iterations which make use of
transformations that are not necessarily unitary.

In this section we review the two phases of the basic QZ method and describe
the connection with the QR method.

Reduction to Hessenberg, triangular form

The Hessenberg, triangular reduction of a dense pair (A,B) starts with reducing
B to upper triangular form via its QR decomposition: (Q∗A,Q∗B = R). This
first step is shown in pane I of Figure 2.7. Next, zeros are introduced in A
without perturbing the upper triangular form of B too much. Notice that if
we are too ambitious and set the entries in rows 3 to n in the first column of
A to zero with a single Householder reflector then the update of B under the
equivalence would destroy almost all zeros created in B. Instead, we introduce a
single zero in position (n, 1) of A by means of a core transformation acting on the
last two rows. This is shown in pane II of Figure 2.7. This core transformation
only introduces one additional nonzero element in position (n, n−1) of B which
is restored to zero with a core transformation acting on the last two columns,
as shown in pane III of Figure 2.7.

This is continued by introducing zeros from the bottom to the top, row by row,
in the first column of A until the first column is in upper Hessenberg form.
Each zero that is introduced in A by a core transformation acting from the
left subsequently introduces a nonzero element in B which is removed by a
core transformation acting from the right. After the first column of (A,B) is
in Hessenberg, triangular form, the process continues on the second column
until the entire pencil is in Hessenberg, triangular form. In the end, we have
computed a unitary equivalence transformation,

(H,R) = Q∗(A,B)Z. (2.55)
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Figure 2.7: Start of unitary Hessenberg, triangular reduction method.

The computational cost of this algorithm is O(8n3) operations if only (H,R) is
formed. Accumulating Q and Z requires an additional O(7n3) [46]. Variants of
the basic reduction algorithm, which are more efficient on modern computer
architectures, have been proposed in [25,59]

Implicit QZ step

In the second phase, a bulge chasing algorithm is used to reduce the Hessenberg,
triangular pencil (H,R) to (real) generalized Schur form. Similar to the QR
method, this starts with computing and introducing a perturbation.

Assume (H,R) is a real-valued matrix pair and %, %̄ are the complex-conjugate
shifts that we want to use. We compute the vector:

x = p2(HR−1)e1

= (HR−1 − %̄I)(HR−1 − %I)e1

= (H − %̄R)R−1(H − %R)R−1e1.

(2.56)

Observe that HR−1 is an upper Hessenberg matrix and as such x only has
nonzero elements in its first 3 rows. The computational cost to compute x is
O(1) because of the Hessenberg, triangular structure. Furthermore by (2.49),
x is a real-valued vector in our example. The next step is to compute an
orthonormal matrix Q1 according to (2.50).

Figure 2.8 shows how Q1 introduces a perturbation in (H̃1, R̃1). Matrix entries
that become nonzero under this transformations are indicated with a ⊕. The
remainder of the implicit QZ step consists of restoring the Hessenberg, triangular
form by chasing the perturbation along the subdiagonal.

The first bulge chasing step is visualized in Figure 2.9. In pane I, an orthonormal
transformation matrix Z1 is computed which restores the upper triangular
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Figure 2.8: Introducing the perturbation in the Hessenberg, triangular pencil.
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Figure 2.9: Chasing the bulge in the Hessenberg, triangular pencil.

structure in R1. This can be achieved with two Householder reflectors or three
core transformations. The update of H1 creates additional nonzero entries in
positions (4, 1) and (4, 2). Next, in pane II, a Householder reflector is computed
which restores the upper Hessenberg form in the first column of H̃2. Thereby
creating new nonzero elements in R̃2. Notice that the bulges in (H̃2, R̃2) have
shifted one row down and one column to the right compared to (H̃1, R̃1).

This process of bulge chasing is repeated until the Hessenberg, triangular form
is restored.

For our theoretical discussion of the implicit QZ method, we assume that the
pencil (H,R) is made up of a proper Hessenberg matrix H and a nonsingular,
upper triangular R. As we will show in the more general setting of Chapter 3,
nonsingularity of R is not required but it simplifies things considerably at
this stage. Under these assumptions, it is clear that an implicit QZ step,
(Ĥ, R̂) = Q∗(H,R)Z, simultaneously performs two similarity transformations:

ĤR̂−1 = Q∗HR−1Q, and, R̂−1Ĥ = Z∗R−1HZ, (2.57)

on the proper Hessenberg matrices HR−1 and R−1H. The implicit approach is
motivated in the implicit Q theorem for Hessenberg, triangular pencils.
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Theorem 2.3.7 (Implicit Q for Hessenberg, triangular pencils). Let (A,B) be
an n×n regular matrix pencil and let Q̂, Q̌, Ẑ, Ž ∈ Fn×n be unitary matrices
satisfying q̂1 = σq̌1, |σ| = 1, such that,

(Ĥ, R̂) = Q̂∗(A,B)Ẑ, and, (Ȟ, Ř) = Q̌∗(A,B)Ž,

are both Hessenberg, triangular pencils in proper Hessenberg, nonsingular
triangular form. Then Q̂ = Q̌D1, Ẑ = ŽD2, and (Ĥ, R̂) = D∗1(Ȟ, Ř)D2
with D1 and D2 unitary diagonal matrices.

Proof. From (2.57) and Theorem 2.3.4 it directly follows that Q̂ = Q̌D1.
Furthermore, we have that ẑ1 = σ̃ž1, |σ̃| = 1, since,

ẑ1 = B−1Q̂R̂e1 = γ̂B−1q̂1

ž1 = B−1Q̌Ře1 = γ̌B−1q̌1.

From (2.57) and Theorem 2.3.4 it directly follows that also Ẑ = ŽD2.

So the outcome of an implicit QZ step is uniquely determined once q1 is fixed.
The implicit QZ method implicitly performs a nested, polynomial accelerated
subspace iteration just like the QR algorithm. Let us make this more precise in
the following theorem.

Theorem 2.3.8 (Polynomial acceleration for QZ). Assume that (H,R) and
(Ĥ, R̂) are both proper Hessenberg, nonsingular triangular pencils that are unitary
equivalent, (Ĥ, R̂) = Q∗(H,R)Z, with the equivalence transformation obtained
from a single implicit QZ sweep with q1 a scalar multiple of pm(HR−1)e1.
Then, for k = 1, . . . , n,

QEk = pm(HR−1)Ek, and, ZEk = pm(R−1H)Ek.

Proof. The first part follows from directly from (2.57) and Theorem 2.3.6. For
the second property, we have, just like in the proof of Theorem 2.3.7:

z1 = γR−1q1 = γR−1pm(HR−1)e1 = γ̃pm(R−1H)e1.

Combining this with (2.57) and Theorem 2.3.6 concludes the proof.

From this analysis and (2.57) we conclude that the implicit QZ method
simultaneously performs two QR iterations on the Hessenberg matrices HR−1

and R−1H. A good choice of shifts will lead to convergence of eigenvalues in
the pencil driving it to (real) generalized Schur form.
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2.3.4 BLAS and levels

Basic linear algebra subprograms or BLAS is a collection of matrix and vector
operations that is available as part of LAPACK [2]. The collection consists of
three levels, see also [46, Section 1.1.17].

Level-1 BLAS operations are vector-vector operations like a vector inner product
or scaled vector addition. These operations involve an amount of data and
require an amount of work on the data that both scale linear in the problem
dimension. Level-2 BLAS operations require a quadratic amount of data
and perform a quadratic amount of work on the data. Examples are scaled
matrix-vector multiplication and vector outer products. Finally, level-3 BLAS
operations require a quadratic amount of data but perform a cubic amount of
work on the data An example is given by matrix-matrix multiplication, which
is called xGEMM in BLAS [2].

As level-3 operations perform more work than level-2 and level-1 operations for
the same amount of data, they can be much more efficient on current hardware
where the cost of memory access often dominates over computations.

The frequent row and column updates in the basic single or double-shift QR
and QZ algorithms that we discussed in this chapter make them rich in level-
2 operations and thus ill-suited from a performance perspective. Blocking
techniques for the QR method [14,15] and QZ method [58] have been successfully
used to mitigate this issue and obtain algorithms that are rich in level-3
operations. We explore the use of blocking within our pole swapping framework
in Chapter 4.

2.4 Conclusion

In this chapter we introduced the standard and generalized eigenvalue
problems and the (generalized) Schur decomposition as an eigenvalue revealing
decomposition. We studied the theoretical properties of polynomial Krylov
subspace methods and discussed iterative Krylov methods such as Arnoldi’s
method. We showed how the polynomial QR and QZ methods proceed by
first reducing the problem to Hessenberg or Hessenberg, triangular form, and
afterwards iterating to (generalized) Schur form. We have seen that these
methods implicitly perform nested subspace iteration with a change of basis
accelerated by polynomials.



Chapter 3

A rational QZ method

This chapter is based on [19]:

Camps D., Meerbergen K., and Vandebril R. A rational QZ
method. (2019) SIAM J. Matrix Anal. Appl. Vol. 40, No. 3, pp.

943–972.

The swapping algorithm outlined in Section 3.3.2 is based on [16]:

Camps D., Mach T., Vandebril R., and Watkins D. S. On
pole-swapping algorithms for the eigenvalue problem. (2019) Submitted.

3.1 Introduction

Chapter 2 presented an overview of the classical QR/Z methods and discussed the
connection with polynomial Krylov subspaces. In this chapter, we present a fully
implicit method of QZ-type for the unsymmetric, generalized eigenvalue problem
which is founded on rational Krylov theory. This rational QZ (RQZ) method is
a pole swapping method which acts on pencils in Hessenberg, Hessenberg form.
We will refer to this form as Hessenberg pairs or Hessenberg pencils for the sake
of conciseness.

As we will demonstrate in detail, Hessenberg pairs and the associated rational
Krylov subspaces are determined by poles that can be exploited to improve
the convergence of the method. Both the original QZ algorithm [83] and the

41
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extended QZ algorithm [130] turn out to be special instances of the RQZ method
determined by a specific choice of poles.

Numerical experiments show that the RQZ method outperforms the classical
QZ method by effectively reducing the number of iterations required to compute
the generalized Schur form.

We will show that the RQZ method executes nested subspace iteration with
rational acceleration. In our theoretical analysis, we rely directly on the pair
(A,B) instead of rephrasing the relations in terms of a single matrix AB−1 or
B−1A as is usually done. The proofs of uniqueness and convergence rely on
rational Krylov theory, just like the theoretical results of the QR/Z methods in
Chapter 2 relied on polynomial Krylov theory.

Related work on QR-type methods with rational acceleration can be found
in [127,128]. However, earlier work mainly centered around combining a shifted
QR step with an RQ step with a single pole [127]. As we will see, our method
sustains multiple poles in the Hessenberg pair and we rely on the simple and
well-understood mechanism of pole swapping, while earlier work used more
specialized semiseparable plus diagonal matrices [128].

The idea of pole swapping in Hessenberg pencils was first introduced by Berljafa
and Güttel [11] in the context of rational Krylov methods. Their article studies
uniqueness of rational Krylov decompositions and proposes an algorithm to
move the poles in a rational Krylov decomposition. The authors also present
how this method can be used to restart the rational Krylov method. We expand
upon this idea in Chapter 7.

The work in this chapter is closely connected to the results of Berljafa and
Güttel [11]. Our main contribution is the study of pole swapping methods for
the direct solution of the eigenvalue problem supported by a detailed uniqueness
and convergence analysis. Furthermore, we provide a novel backward stable
swapping algorithm.

The material in this chapter is organized as follows. The notion of a Hessenberg
pair is formally defined in Section 3.2 and its properties are studied subsequently.
Two types of operations on Hessenberg pairs are discussed in Section 3.3: the
introduction of a new pole and the swapping of poles. The algorithm we propose
to compute the swapping transformations is shown to be backward stable in
Appendix B. Section 3.4 proposes a method to reduce a dense matrix pair to
a Hessenberg pencil with prescribed poles by means of unitary equivalence
transformations. This is the RQZ analogue of the initial reduction phase in
the QZ algorithm. We demonstrate that a good choice of poles can already
lead to premature deflations during the reduction phase. The generalization
of the iterative phase is presented in Section 3.5. It is illustrated how an RQZ
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step with a single shift can be performed implicitly and numerical experiments
illustrate the speed and accuracy. An implicit Q theorem for Hessenberg pairs
is stated and used to prove that the RQZ iteration implicitly performs nested
subspace iteration accelerated by a set of rational functions in Sections 3.6
and 3.7. Section 3.8 provides an exactness result which shows that the RQZ
method deflates an eigenvalue in a single iteration provided a perfect shift is
available. We conclude the chapter in Section 3.9.

3.2 Hessenberg pairs and their poles

In this section we repeat necessities from the literature and introduce some basic
concepts linked to Hessenberg pairs. These pairs appear naturally in the context
of the rational Krylov method introduced and studied by Ruhe [92–94,96]. We
elaborate further on this connection in Chapter 7.

3.2.1 Proper Hessenberg pairs

From Definition 2.2.4 we recall that a proper Hessenberg matrix has all its
subdiagonal elements different from zero. Being proper ensures that there are no
obvious deflations allowing us to split the Hessenberg matrix into block upper
triangular form (2.52) with smaller subproblems. For a pair of Hessenberg
matrices there is a subtlety, as there are two less obvious possibilities for
deflation.

Definition 3.2.1 (Proper Hessenberg pair). A pair of Hessenberg matrices
A,B ∈ Fn×n is said to be proper if the following two conditions are met:

I. There is no i in 1, . . . , n− 1 so that ai+1,i and bi+1,i are simultaneously
zero;

II. The first columns of A and B are linearly independent, as are the last
rows of A and B.

For a proper Hessenberg pair we define its ordered pole tuple as:

Ξ = (ξ1, . . . , ξn−1), ξi ∈ C̄, where ξi = ai+1,i/bi+1,i, i = 1, . . . , n−1.

The ratios of the subdiagonal elements of A over the subdiagonal elements of B
are thus called the poles of the proper Hessenberg pair. Since we set division
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by zero equal to ∞ in C̄, a pole is located at ∞ if the respective subdiagonal
element of B is zero.

The first condition of being proper means that all poles are well-defined over C̄,
so there is no 0/0. Just like in the classical case ai+1,i = bi+1,i = 0 allows us to
deflate the problem into two independent subproblems.

The second condition is less obvious, but it is simple to deflate an eigenvalue
if it is not met. Construct a core transformation Q1, acting on the first two
rows such that Q∗1 maps the first column of A and B in the direction of e1,
then the pair Q∗1(A,B) allows for a deflation. Similarly we can construct a
rotation Zn−1 to transform (A,B)Zn−1 to a deflatable format in case the last
rows are linearly dependent. If condition II does not hold then the pair can be
transformed into an equivalent pair for which condition I does not hold in the
first or last subdiagonal position.

Condition II is equivalent with the condition that the pencils (A− λB)e1 and
eTn (A− λB) do not have a zero according to Definition 2.1.5.

We remark that even if condition II of the definition of a proper Hessenberg
pair were not met, we still define the first pole ξ1 and last pole ξn−1 as in
Definition 3.2.1. Suppose, however, that there exists a scalar γ such that
a1 = γb1, with a1 and b1 the first columns of A and B respectively and that
a21 6= 0. This means that γ is both the first pole, ξ1 = a21/b21 = γ, and an
eigenvalue, Ae1 = γBe1. Similarly, the last pole ξn−1 is an eigenvalue if the
last rows of A and B are linearly dependent.

Theorem 2.3.4 shows that properness of the Hessenberg matrix ensures essential
uniqueness of the QR iterates, which is crucial in the design of an implicit QR
algorithm [39,40] for the standard eigenvalue problem. We prove an implicit
Q theorem for Hessenberg pairs in Section 3.6 which shows that also proper
Hessenberg pairs inherit a type of essential uniqueness allowing for the design
of an implicit method.

The other pencils for which QZ algorithms were designed fit in Definition 3.2.1.
Matrix pairs in Hessenberg, triangular form [83] are proper with poles Ξ =
(∞,∞, . . . ,∞) and a matrix pair in extended Hessenberg form [130] is also a
proper Hessenberg pair with poles being either 0 or ∞. Appendix A explains
the extended Hessenberg structure in more detail.

The properties of proper Hessenberg pairs discussed in the next lemma are
frequently used throughout this chapter.

Lemma 3.2.2. Let (A,B) ∈ Cn×n be a proper Hessenberg pair with poles
Ξ = (ξ1, . . . , ξn−1). Then the following statements hold:
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I. For µ, ν ∈ C, such that µ/ν /∈ Ξ, we have that (νA−µB) is a proper
Hessenberg matrix.

II. For µ, ν ∈ C, such that µ/ν is equal to a certain pole ξk, 1 ≤ k ≤ n− 1,
we have that N = (νA−µB) is block upper triangular,

N =
[
N11 N12

N22

]
,

where N11 and N22 are Hessenberg matrices respectively of sizes k×k and
(n− k)×(n− k).

III. For µ, ν, α, β ∈ C, such that µβ 6= αν, we have that,

(M,N) = (βA−αB, νA−µB),

is a proper Hessenberg pair with poles,

ξ̂k = βak+1,k − αbk+1,k

νak+1,k − µbk+1,k
for k = 1, . . . , n− 1.

IV. For k = 1, . . . , n− 1 we have that R(a1, . . .ak) 6= R(b1, . . . , bk).

Proof. Statements I and II are trivial. The pencil of statement III satisfies the
definition of a proper Hessenberg pair: M and N are clearly upper Hessenberg
matrices, their kth subdiagonal elements are,[

mk+1,k
nk+1,k

]
=
[
β −α
ν −µ

] [
ak+1,k
bk+1,k

]
.

The vector on the left is different from zero since the matrix is nonsingular
and the vector on the right is nonzero. The first column of M is also linear
independent from the first column of N because the same nonsingular matrix
is used in the transformation. The same holds for the last row. The proof
of statement IV is by induction and contradiction. The case k = 1 follows
from the definition of a proper Hessenberg pair. Suppose the statement holds
up to column k. We assume now, by contradiction, that it breaks down at
column k + 1, thus R(a1, . . . ,ak+1) = R(b1, . . . , bk+1). The equality implies
the existence of a (k + 1)×(k + 1) matrix C such that,

[
a1, . . . ,ak+1

]
=
[
b1, . . . , bk+1

]  c11 . . . c1,k+1
...

. . .
...

ck+1,1 . . . ck+1,k+1

 . (3.1)
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It follows from the induction hypothesis that there is a j with 1 ≤ j ≤ k such
that aj /∈ R(b1, . . . , bk). Therefore ck+1,j 6= 0. By the Hessenberg structure,

0 = ak+2,j =
k+1∑
i=1

bk+2,i ci,j = bk+2,k+1ck+1,j .

This implies that bk+2,k+1 must be zero and as a consequence (3.1) implies that
also ak+2,k+1 = 0. These two values being simultaneously zero contradicts the
properness.

3.3 Manipulating the poles of Hessenberg pairs

In this section we study two operations for manipulating the poles of a
Hessenberg pair, namely changing the first or the last pole, and swapping
consecutive poles. These methods are also applied in [11] to change the poles of
a rational Krylov recurrence.

3.3.1 Changing poles at the boundaries

Let A,B ∈ Cn×n be a proper Hessenberg pair and assume the first pole ξ1
different from the eigenvalues of (A,B). The pole ξ1 can be changed to another
pole ξ̂1 ∈ C̄ by multiplying (A,B) from the left with a unitary transformation
Q∗1, where Q∗1x = αe1 and,

x = γ̂ (β̂1A−α̂1B)(β1A−α1B)−1e1 = γ (A−ξ̂1B)(A−ξ1B)−1e1, (3.2)

with γ and γ̂ convenient scaling factors; and α̂1, β̂1, α1, β1 ∈ C are chosen to
satisfy the new pole ξ̂1 = α̂1/β̂1 and the old pole ξ1 = α1/β1. The notation with
α and β to denote (βA−αB) is factually the most correct one. For notational
simplicity, however, we will often use the shorthand notation (A−ξB), where
ξ = α/β instead. As ξ̂1 6= ξ1, otherwise nothing needs to be done, x must be a
vector with only the two leading elements nonzero and thus Q1 is always well
defined and can, for example, be chosen as a rotation matrix.

If Q1 is used to compute (Â, B̂) = Q∗1(A,B) then ξ̂1 will become the first pole
of (Â, B̂) because the first subdiagonal element of (Â− ξ̂1B̂) is zero:

(Â− ξ̂1B̂)e1 = Q∗1(A− ξ̂1B)e1
= γ̃ Q∗1(A− ξ̂1B)(A− ξ1B)−1e1 = γ̃γ−1 Q∗1x = α γ̃γ−1e1.
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Theoretically, under the assumption that B is nonsingular, we could equally
well define x = γ(AB−1− ξ̂1I)(AB−1− ξ1I)−1e1. Practically, however, to avoid
the nonsingularity assumption of B, and for reasons of numerical stability, we
stick to (3.2).
Remark 3.3.1. As (A−ξ1B)−1e1 is scalar multiple of e1 there is no need to
compute this in practice. Moreover, even if ξ1 is an eigenvalue, a scalar multiple
of e1 is always a solution of (A−ξB)y = e1. The inverse factor is included to
emphasize the rational function used to update the pole and moreover, we will
see in Chapter 4 that it does play a role in the multishift setting. In practice
we compute x = γ(A−ξ̂1B)e1 in O(1) operations.

We can also compute an equivalence transformation to change the last pole by
operating on the last two columns of the Hessenberg pair in a comparable way.
Assume ξn−1 different from the eigenvalues of (A,B). We can change the pole
ξn−1 to ξ̂n−1 ∈ C̄ if we consider the row vector,

xT = γeTn (A−ξn−1B)−1(A−ξ̂n−1B),

with γ a convenient scaling factor and a transformation Zn−1 that introduces a
zero in the penultimate position of xT : xTZn−1 = αeTn . If Zn−1 is computed
in this way then the last pole in the Hessenberg pair (Â, B̂) = (A,B)Zn−1 is
ξ̂n−1.

Again, the system eTn (A−ξn−1B)−1 is never solved in practice as the solution is
a scalar multiple of eTn , but is only included for theoretical purposes. In practice
we compute xT = γeTn (A−ξ̂n−1B).

3.3.2 Swapping poles

Any two consecutive poles ξi and ξi+1 in a proper Hessenberg pair (A,B) can
be swapped via a unitary equivalence on (A,B). We assume both poles to be
different, otherwise nothing needs to be done. The procedure is summarized
pictorially in Figure 3.1 where poles ξ3 = 3 / c and ξ4 = 4 / d are swapped.
In this case the swapping operation is achieved by computing unitary matrices
Q4 and Z3 that change the order of the eigenvalues in the 2×2 subpencil
A(4:5, 3:4)− λB(4:5, 3:4). This subpencil is in generalized Schur form and has
eigenvalues ξ3 and ξ4. The relevant part of the Hessenberg pair is indicated
by the shaded region in Figure 3.1. The equivalence transformation changes
all elements marked with ⊗ in pane II of Figure 3.1. Observe that the ratios
4 / d and 3 / c are preserved under swapping but the subdiagonal values
themselves can change.
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Figure 3.1: Swapping poles in a Hessenberg pair: (I) before swap, (II) after
swap.

Swapping eigenvalues in an upper triangular pencil by means of a unitary
equivalence transformation is a classical problem. It is typically used to reorder
eigenvalues in the generalized Schur form for the sake of computing deflating
subspaces. The problem has a unique solution which is determined by a coupled
Sylvester equation. Algorithms based on solving the coupled Sylvester equation
have been proposed by Kågstöm [57,60]. Van Dooren [122] proposes a direct
method which implicitly solves the Sylvester equation. The method of Van
Dooren is used in the reordering routines xTGEX2 of LAPACK [2].

In this section we introduce a swapping algorithm which is related to the method
of Van Dooren [122], but has an improved backward error bound. The detailed
error analysis is included in Appendix B. In the current section we describe the
swapping algorithm and state the result of our error analysis in Lemma 3.3.2.
This lemma shows that our swapping method is matrix-wise backward stable,
while the error of earlier methods is bounded by εm max (‖A‖2, ‖B‖2). Here, εm
is the machine precision and A and B refer to the small 2×2 upper triangular
matrices taken out of the large Hessenberg pair. We will use this notation for
the remainder of the current section. Numerical experiments are included in
Appendix B which demonstrate the improved accuracy.

We are thus looking for an equivalence transformation Q∗(A− λB)Z = Â− λB̂
of the following form:

Q∗
([
α1 a

α2

]
− λ

[
β1 b

β2

])
Z =

[
α̂1 â

α̂2

]
− λ

[
β̂1 b̂

β̂2

]
, (3.3)

with α1/β1 = α̂2/β̂2 = ξ1 and α2/β2 = α̂1/β̂1 = ξ2.

Solution in exact arithmetic. To achieve the swapping of (3.3), we need to
construct Z = [z1 z2], Q = [q1 q2] in such a way that:
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• q1, z1 are a deflating pair (2.9) for A−λB corresponding to the eigenvalue
ξ2, i.e.

(A− λB)z1 = γ1q1(α2 − λβ2),

• similarly, q2, z2 are a deflating pair for ξ1,

(A− λB)z2 = γ2q2(α1 − λβ1).

It then follows from the orthogonality of Q, Z that

q∗2Az1 = q∗2Bz1 = 0,

and thus the swapping is achieved.

There are two options to compute this equivalence:

Method 1 On one hand, we can first construct a unitary matrix Z having its
first column equal to the right eigenvector of A− λB related to ξ2. To this end,
the matrix H1 = β2A− α2B is constructed. Observe that the second row of H1
is zero by construction. Next, a rotation Z is computed such that HZ has a
zero element in position (1, 1) such that z1 is indeed the right eigenvector of
A− λB associated with ξ2 = α2/β2 as:

H1Z = (β2A− α2B)Z =
[
0 ×
0 0

]
. (3.4)

This implies that Az1 and Bz1 are parallel vectors and that a rotation Q can
be computed to simultaneously introduce a zero in position (2, 1) of both AZ
and BZ, thereby retrieving (3.3).

Method 2 On the other hand, we can first compute a unitary matrix Q having
its second column equal to the Hermitian conjugate of the left eigenvector of
A−λB related to ξ1. Therefore we consider the matrix H2 = β1A−α1B which
has zeros in its first column by construction. Now, compute a rotation Q such
that Q∗H has a zero in position (2, 2) such that q∗2 is indeed a left eigenvector
of A− λB associated with ξ1 as:

Q∗H2 = Q∗(β1A− α1B) =
[
0 ×
0 0

]
. (3.5)

This implies that q∗2A and q∗2B are parallel vectors and that a rotation Z can
be computed to simultaneously introduce a zero in position (2, 1) of Q∗A and
Q∗B, thereby retrieving (3.3). This second approach can be regarded as the
dual of the first method.
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Solution in floating point arithmetic. In Appendix B we prove the following
error result for computing the swapping transformations in floating point
arithmetic. We use a tilde to indicate computed quantities.

Lemma 3.3.2. Let

A− λB =
[
α1 a

α2

]
− λ

[
β1 b

β2

]
,

with α1/β1 = ξ1, and α2/β2 = ξ2. Furthermore, assume |ξ1| ≥ |ξ2|. If the
swapping is computed by first deriving Z̃, as described in method 1 above, and
afterwards computing Q̃ such that Q∗(BZe1) = γe1, then we have that the
computed transformations satisfy:

Q̃∗(A+ EA, B + EB)Z̃ =
([
α̃1 ã

α̃2

]
,

[
β̃1 b̃

β̃2

])
,

with ‖EA‖2 ≤ cεm‖A‖2, ‖EB‖2 ≤ cεm‖B‖2, c a small constant.

Lemma 3.3.2 guarantees that the method computes and exact swapping
transformation of a nearby problem and that the off-diagonal elements in
position (2, 1) can be safely dismissed if |ξ1| ≥ |ξ2|.

A corollary of Lemma 3.3.2 is that a backward stable swapping is achieved in
case |ξ2| > |ξ1| by first computing Z̃ via method 1 and afterwards obtaining Q̃
such that Q∗(AZe1) = γe1. This implicitly computes the transformations for
B − λA whose eigenvalues are the inverse of A− λB, such that Lemma 3.3.2
holds.

Another possibility is to use method 2. This leads to a backward stable
swap when Z is computed from (e∗2Q∗A)Z = γe∗2 if |ξ1| ≥ |ξ2| and from
(e∗2Q∗B)Z = γe∗2 otherwise. This can be verified by applying Lemma 3.3.2 to
the pertransposed pencil. This is a transposition along the anti-diagonal.

All strategies that lead to a backward stable swap are summarized in Table 3.1.
The first row of the table corresponds to method 1, the second with method 2.
Option A is stable when |ξ1| ≥ |ξ2|, while option B is stable when |ξ1| < |ξ2|.

3.4 Direct reduction to a proper Hessenberg pair

The rational QZ algorithm we propose in Section 3.5 operates on a proper
Hessenberg pair. If we are given an arbitrary matrix pencil A − λB not yet
in proper Hessenberg form, we first need to reduce it to this form. We use
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Table 3.1: Numerical methods to compute a backward stable pole swap.

|ξ1| ≥ |ξ2| |ξ1| < |ξ2|
1.A) First Z, then Q from

Q∗(BZe1) = γe1

1.B) First Z, then Q from
Q∗(AZe1) = γe1

2.A) First Q, then Z from
(e∗2Q∗A)Z = γe∗2

2.B) First Q, then Z from
(e∗2Q∗B)Z = γe∗2

equivalences since we are interested in the eigenvalues and, for reasons of
numerical stability, we will stick to unitary equivalences. At the end of the
section we will illustrate with a numerical experiment that good pole selection
can lead to deflations, already during the reduction process.

3.4.1 The reduction algorithm

The algorithm will transform an n×n matrix pair (A,B) to a unitary equivalent
Hessenberg pair with a prescribed tuple of poles Ξ = (ξ1, . . ., ξn−1). The
algorithm proceeds similarly to the direct reduction to Hessenberg, triangular
form summarized in Figure 2.7, with the major difference that a pole is
introduced at every step.

Just like in the classical reduction to Hessenberg, upper triangular form we
commence with computing a QR factorization of B = QR and updating the
matrix pair to (Q∗A,Q∗B). The matrix Q∗B is now already in upper triangular
form. This is shown in pane I of Figure 3.2 for our running example matrix pair
of size 5 × 5. Moreover, we assume in the remainder of this section, that all
zeros on the diagonal of B –infinite eigenvalues– are removed. An algorithm for
this can be found in [138, Section 6.5].

We will now bring the first column of A to Hessenberg form. In pane II, a zero
is introduced in position (5, 1) of matrix A by operating on the last two rows.
This destroys the upper triangular shape in the last two rows of B. The upper
triangular shape can be restored by acting on columns 4 and 5 as shown in
pane III without destroying the newly created zero in A.

The process of introducing zeros in the first column of A by acting on the rows
and maintaining the upper triangular structure in B by acting on the columns
can be repeated until the first column of A is brought to upper Hessenberg
shape. This coincides with the classical reduction to a Hessenberg, triangular
pair as discussed in Chapter 2.
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Figure 3.2: Reduction to a Hessenberg pencil. First part.

At this stage we have arrived at pane I of Figure 3.3. The first column of (A,B)
is now already in the correct form but still has a pole at ∞. We can replace ∞
by another pole using the technique from Section 3.3 applied to the first column
of (A,B) which is in Hessenberg form. This is always possible, except when
there is an obvious deflation in the top left corner, meaning that the current
pole is undefined as 0/0. This does not pose any problems: deflate and continue.
Under the assumption that there is no deflation, we start by first introducing
the last pole ξ4 = 4 / d first. In the following steps of the reduction procedure
this pole will move down to end up at the correct position at the bottom of the
subdiagonal. The current state of the pair is visualized in pane II of Figure 3.3.

A

×
×
××××
××××
××××
××××
××××

B

×××××
××××
×××
××
×

I.

A← Q∗1A

⊗⊗⊗⊗⊗
⊗⊗⊗⊗
××××
××××
××××

4

B ← Q∗1B

⊗⊗⊗⊗⊗
⊗⊗⊗⊗d
×××
××
×

II.

A

××
×
×

×××
×××
×××
×××
×××

4

B

×××××
××××
×××
××
×

d

III.

A← Q∗AZ

⊗
⊗⊗
×⊗
⊗⊗⊗
⊗⊗⊗

××

×××
×××

4

B ← Q∗BZ

×××

××
×

⊗⊗
⊗⊗⊗⊗
⊗⊗⊗d

IV.

A← Q∗1A

⊗⊗⊗⊗⊗
⊗⊗⊗⊗
×××
×××
×××

3
4

B ← Q∗1B

×××
××
×

⊗⊗⊗⊗⊗
⊗⊗⊗⊗c
d

V.

A

×××××
××××
×××
××
×

1
2
3
4

B

×××××
××××
×××
××
×

a
b

c
d

VI.

Figure 3.3: Reduction to a Hessenberg pencil. Second part.

The second column has been brought to Hessenberg, triangular form in pane
III of Figure 3.3 via the classical procedure of introducing zeros in the second
column of A and maintaining the upper triangular structure in B. Observe that
this does not affect the existing pole ξ4. At this moment, the first pole equals
ξ4, while the second pole is ∞. The poles in the shaded region of pane III are
now swapped using the techniques from Section 3.3. This moves the pole at ∞
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to the top of the matrix pair in pane IV. The swapping technique can be used,
as the two leading columns of (A,B) are in Hessenberg form at this stage of
the reduction algorithm. The swapping is always well defined, even if there is a
succession of identical poles. The pole ξ4 has moved one position down along
the subdiagonal. The pair is now ready for the introduction of pole ξ3 which
is completed in pane V. This entire process of creating zeros, swapping poles,
and introducing a new pole, can be repeated until the end result of pane VI is
obtained, and the matrix is in the desired Hessenberg form.

After the reduction process, the matrix does not necessarily need to be in proper
Hessenberg form. Possibly the pole ξn−1 coincides with an eigenvalue, allowing
for deflation in the lower right corner. In this case one deflates ξn−1 and checks
whether ξn−2 leads to a deflation, and so forth, until the matrix has become
proper. It can also happen that during the reduction any of the interior poles
deflate. In this case the reduction can be continued on the separated parts of
the pencil. This situation is studied in the numerical example of Section 3.4.2.

The introduction of the poles takes an additional O(6n3) flops on top of the
O(8n3) operations required to reduce a pencil to Hessenberg, triangular form
[46].

3.4.2 Numerical experiment

We study two matrix pairs from the magnetohydrodynamics (MHD) dataset
available in the Matrix Market collection [13]. The matrices are of sizes 416
and 1280 respectively and known to be ill-conditioned. They originate from a
Galerkin finite element discretization of the underlying MHD problem. Their
spectrum consists of a tail along the negative real axis and a set of eigenvalues
close to the imaginary axis. In this numerical experiment we determine deflating
subspaces for the two regions of eigenvalues already during the reduction phase.
The tests were run in Matlab R2017b.

Inspired by the link between contour integration methods [90, 107] and rational
filtering techniques [116, 119], the idea is to introduce poles that make up a
rational filter that slices the spectrum. To achieve this effect, the poles are
chosen on a contour Γ in the complex plane that contains the eigenvalues along
the negative real axis. In Section 3.7 we explain in full detail how introducing
and swapping poles implicitly applies a rational filter to the pencil.

The poles are chosen on an elliptical contour Γ = e(c, rx, ry), where c is the
center of the ellipse, rx is the radius in x-direction (along the real axis), ry
is the radius in the y-direction (along the imaginary axis). For the smaller
problem, Γ is selected as e(−1.3, 1.5, 3) and discretized in 120 nodes. For the
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larger problem, Γ = e(−25, 27, 6) and it is discretized in 400 nodes. These nodes
are the poles introduced during the reduction to Hessenberg form. The aim is
to get the pair improper, enforcing thereby a middle deflation separating the
two regions. In case of a middle deflation we continue introducing poles on the
separated parts.

The results are presented in Figures 3.4 to 3.6. Figure 3.4 shows an overview of
the spectrum of both matrix pairs. The two regions of eigenvalues are indicated
with different markers. The box in Figure 3.4 marks the area in which Figure 3.5
will zoom in; it shows where the regions meet in detail, together with the poles
of the Hessenberg pair.

Figure 3.6 displays the magnitude of the subdiagonal elements |ai+1,i|+ |bi+1,i|.
All poles which are considered numerically zero and thus lead to a deflation are
emphasized in a shaded rectangle. Typically some of the first and last poles
are deflated, but more important is the presence of interior deflations. This
happens at poles 103 to 106 after 160 poles have been introduced in the pair of
size 416. For the larger pair, poles 317 to 321 are deflated after 621 poles have
been introduced. The eigenvalues outside Γ are located in the top left part of
the Hessenberg pair, those inside Γ appear after the interior deflation.
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Figure 3.4: Eigenvalues in region 1 ( ; bow-shape) and region 2 ( ; close to the
real axis). On the left we have the problem of size 416 and on the right 1280.

This numerical experiment shows that deflating subspaces containing regions
of eigenvalues can be found already during the reduction to Hessenberg form.
We like to stress that deflation is obtained without any of the poles converging
towards an eigenvalue, but by choosing poles on a contour such that they
construct an effective rational filter.
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Figure 3.5: Close-up of the central part where the regions meet for the problem
of size 416 and 1280. The legend is identical to the one of Figure 3.4 extended
with the poles ( ; on the ellipse around the real axis) .
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Figure 3.6: Magnitudes of the subdiagonal elements in the matrix pair after
the Hessenberg reduction for the problem of size 416 (left) and 1280 (right).

3.5 Implicitly single shifted rational QZ step

In this section we present the implicit RQZ step for a Hessenberg pair. Numerical
experiments are included at the end of this section and illustrate the performance
and accuracy of the algorithm.

The algorithm operates on proper Hessenberg pairs. These pairs could be the
result of the reduction procedure presented in Section 3.4 or they could be given
directly, e.g., as coming from an iterative rational Krylov method, where one
would like to compute the eigenvalues of the projected Hessenberg pair, see also
Chapter 7.
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3.5.1 The algorithm

Before describing the algorithm we like to comment on the nomenclature. We
use both the terms poles ξ and shifts % to refer to elements on the subdiagonal of
a Hessenberg pair. In fact our shifts are poles as well, but we typically consider
poles as subdiagonal elements that are sustained in the Hessenberg pair, while
shifts are introduced and removed in a single implicit RQZ step. A shift is
pushed in at the top, chased to the bottom, and removed at the end.

We introduce the RQZ procedure with an example. Given a 5×5 Hessenberg
pair (A,B) with poles ξ1 = 1 / a , ξ2 = 2 / b , ξ3 = 3 / c , ξ4 = 4 / d ∈ C̄.
The RQZ step consists of three stages, similar to all algorithms of implicit
QR-type. These are an initialization, a chasing, and a finalization phase.

Initialization. Suppose we are given a shift % = ⊕/� ∈ C̄, for instance the
Wilkinson shift [46]. Pane I in Figure 3.7 shows the Hessenberg pair in its initial
state. The shift1 is introduced in pane II by changing the first pole with a
transformation Q1 obtained by using the results from Section 3.3.

Chasing. Panes III-V show how the shift is relocated from the first position
on the subdiagonal to position n−1 by repeatedly swapping it with the poles of
the Hessenberg pair. The shift is chased to the bottom. The matrix elements
that are changed in every step are marked with an ⊗.

During this procedure the shift will move from the top-left to the bottom-right
and all poles will move up one position in the direction of the top-left corner.
The assumption that the shift differs from the poles % 6= ξi, for all i, ensures that
none of the swapping operations equals an identity, otherwise the downward
movement of the shift will undo the upward movement of the corresponding
pole.

Finalization. Finally, in pane VI, one last operation can be performed where
we have the possibility to remove the shift % and introduce any new pole ξ̂4 =
5 / e ∈ C̄, via the procedure described in Section 3.3.

It is clear that the algorithm described here generalizes the classical QZ algorithm
[83] which we discussed in Chapter 2. In the QZ algorithm [83] one chases a
bulge and in the final step the new pole was always put to ∞ thereby restoring

1A shift equal to a pole will not result in a breakdown, but leads to slow or no convergence
at all (see Section 3.7). In practice shifts should be taken different from the poles.
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Figure 3.7: Single shifted implicit RQZ step on a 5×5 Hessenberg pair with
shift %.

the upper triangular form of B. The extended QZ algorithm [130] acts on
extended Hessenberg pencils and allows for poles at 0 or ∞.

In the rational QZ algorithm we chase a shift instead of a bulge or a rotation.
However, the shift is encoded in the bulge as well, as it is found as an eigenvalue
of Watkins’ bulge pencil [137, Section 5], [138]; the other eigenvalue in the bulge
pencil is ∞. If we consider the same bulge pencil in the rational QZ case we see
that the eigenvalue at ∞ is replaced by a pole of the pencil. Moreover, also the
pole swapping technique is nothing else than the bulge exchange interpretation
of Watkins [136].

3.5.2 Shifts, poles, and deflation

In order to implement the RQZ algorithm and in particular a single RQZ step,
we need good strategies to select the shift, the new pole introduced at the very
end, and a procedure to check if there are deflations.

For the shifts we typically take the Wilkinson shift [46, 141, 142]. This is the
eigenvalue of the trailing 2×2 block that is closest to ann/bnn. For the poles
there are several options: one could as well consider a Wilkinson strategy
determined by the 2×2 block in the upper-left corner or one could use other
techniques such as poles on a contour to do filtering, see, e.g., Section 3.4.2.
Optimal pole selection is a difficult and problem specific issue which is beyond
the scope of this thesis. In our numerical experiments we test pole selection
strategies based on localized eigenvalue estimates such as Wilkinson poles.
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The deflation criterion for the interior poles ξ2, . . . , ξn−2 is obvious. If one
of these is undefined in C̄, i.e. a 0/0, the problem can be split into smaller,
independent problems as the pencil is block triangular form. This means in fact
that for a certain i, two subdiagonal elements ai+1,i and bi+1,i are simultaneously
zero. To numerically check this we use the classical relative criterion taking the
sizes of the neighbouring elements into consideration [46],

|ai+1,i| ≤ cεm(|ai,i|+ |ai+1,i+1|) and |bi+1,i| ≤ cεm(|bi,i|+ |bi+1,i+1|),

with εm the machine precision and c a small constant.

The situation for the exterior poles ξ1 and ξn−1 is more peculiar. Whereas the
interior poles are fixed, the exterior ones can be altered. Instead of changing
ξ1 or ξn−1 to another pole, we would like to know whether it is possible to
move them outside of C̄: we would like to deflate an eigenvalue. To this end we
need to create simultaneous zeros on the subdiagonal of A− λB with a single
operation such that the pair is no longer proper. We consider the situation at
the bottom-right, the top-left corner proceeds similar. Suppose we would like
to check if a deflation is possible for the last subdiagonal positions, which are
an,n−1 and bn,n−1.

This is only possible if the matrix
[ an,n−1 an,n
bn,n−1 bn,n

]
is of rank 1, or, equivalently,

the pencil eTn (A− λB) has a zero according to Definition 2.1.5. If this is the
case, we can simultaneously annihilate the subdiagonal elements by creating a
rotation Zn−1 which rotates the last rows of (A,B) in the direction of eTn an
deflates the zero of eTn (A− λB) as an eigenvalue of A− λB. In our numerical
experiments we assume the matrix to be of rank 1 if σmin/σmax < εm.

3.5.3 Numerical experiment

We apply the RQZ method on two sets of problems: random matrix pairs and
two problems from fluid dynamics. We are interested in the accuracy and speed.

Random matrix pairs. We test the single shift RQZ algorithm on 9 randomly
generated, complex-valued matrix pairs with sizes ranging from 100 to 1000.
The results are averaged over 10 runs. The pairs are first reduced to Hessenberg
pairs with all poles at infinity, implying that no additional computational work
has been done compared to the reduction phase of the QZ method. The shift is
always taken as the Wilkinson shift. The poles are selected according to four
different strategies: poles at infinity, poles at zero, random poles, and poles
chosen as the Wilkinson shift from the upper-left 2× 2 block. The last choice is
called the Wilkinson pole.
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The results are summarized in Figures 3.8 and 3.9. The left pane of Figure 3.8
shows the relative backward errors ‖Â−Q∗AZ‖2/‖A‖2 and ‖B̂−Q∗BZ‖2/‖B‖2
for the reduction to a Hessenberg pair (lines without markers) and the backward
error on the Schur form for the four different pole strategies. The backward error
is small in all cases. The right pane shows the average number of iterations per
eigenvalue. Clearly, the Wilkinson pole requires the least number of iterations
per eigenvalue. It requires on average 1.5% less iterations than the classic choice
of poles at infinity. Random poles and poles at zero perform the worst.
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Figure 3.8: On the left the relative backward errors related to the reduction
to a Hessenberg pair (no markers) and to the Schur form (with markers) are
demonstrated. The error on A is represented with a dashed line and the error
on B with a full line. On the right we see the average number of iterations per
eigenvalue for the four different pole strategies.

Figure 3.9 shows the total number of pole swaps scaled with n2. The scaling
factor is used since the number of pole swaps per iteration is O(n) and the
expected number of iterations is also O(n) resulting in a total of O(n2) swaps.
This measure of performance depends heavily on the positions where deflations
occur and as such gives a much better view on the algorithmic behavior. The
order of the four strategies remains the same, but the gains with Wilkinson
poles increase up to 4%. This signals the occurrence of deflations at other
spots than only in the lower-right corner as is typically the case in the classical
setting.

IFISS problems. In this experiment we apply the RQZ method on two
problems from fluid dynamics generated with IFISS [34,35]. The first problem
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Figure 3.9: The total number of swaps scaled by n2 for the computation of the
Schur form for the four different pole strategies.

originates from a model for the flow in a unit-square cavity, the second problem
comes from a model for the flow around an obstacle. Both models are discretized,
resulting in two real, generalized eigenvalue problems. The cavity flow problem
is of size 2467, the obstacle flow problem of size 2488. We applied the single
shift RQZ method after initial reduction to Hessenberg form with poles at
infinity. Wilkinson shifts are employed in all cases. We used poles at infinity
and Wilkinson poles. The spectra of the matrices are shown in Figure 3.10.
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Figure 3.10: On the left the spectrum of the cavity flow problem and on the
right the spectrum of the obstacle flow problem are shown.

The results of the experiment are summarized in Table 3.2. It lists the relative
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backward error on the Schur form for both A and B for both problems and the
two pole strategies. The backward error is very good in all cases. The table
also lists the average iterations per eigenvalue and how this compares relatively
to the result of poles at infinity. We observe that the average number of swaps
and iterations when employing Wilkinson poles is always below the numbers
generated by the classical approach.

Table 3.2: Results of the RQZ method on the IFISS problems. The first column
lists the problem, the second column the pole strategy. Columns 3 and 4
present the backward error on A and B, columns 5 and 6 the average number
of iterations and performance compared to QZ, and columns 7 and 8 the total
number of swaps and the performance compared to QZ.

Problem pole error A error B it/n % swaps/n2 %

Cavity flow ∞ 7.5 · 10−15 4.4 · 10−15 2.49 100 0.446 100
Wilk. 7.8 · 10−15 4.1 · 10−15 2.34 94.2 0.443 99.3

Obstacle flow ∞ 9.2 · 10−15 7.8 · 10−15 2.54 100 0.617 100
Wilk. 8.8 · 10−15 7.8 · 10−15 2.36 93.0 0.595 96.3

3.5.4 Tightly-packed shifts

The single shifted RQZ method is, just like the classical QZ method, sequential
in nature and not very cache efficient. To enhance cache performance one can
go for a multishift approach and chase m shifts simultaneously or one can chase
m single shifts as close as possible after each other. In the next chapter, we will
study multishift, multipole RQZ steps. The theory in this chapter is not suited
for a multishift setting and we will confine ourselves for now to a description
and a numerical experiment using tightly-packed shifts.

Assume we would like to chase m tightly-packed shifts, which are typically
the eigenvalues of the bottom-right m×m block of (A,B). These shifts are
introduced one after another in the Hessenberg pair. The first shift is introduced
and swapped down one row. Next the second shift is introduced and both
shifts need to be swapped down a single row, starting with the lower-right one
first. As a result there is space to introduce the third shift, and the procedure
continues. At this stage, the first m subdiagonal elements of the pair (A,B)
encode the shifts.

In order to chase the block of m shifts, one needs to swap all shifts down
one row, starting again with the one in lower-right corner first. In total this
requires m equivalence transformations (3.3) which are accumulated to update
the necessary parts of the matrices in a cache efficient manner. The first batch
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of swaps in illustrated in Figure 3.11. It is also possible to accumulate all
transformations that swap the m shifts with the subsequent k poles, this is
tested in Chapter 4.
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Figure 3.11: First swap in the RQZ method with m = 4 tightly-packed shifts.
The magnified parts show the 4 shifts �/� right after the initialization phase
and indicates how they can all be swapped with the next pole ⊕/	 by four
swaps. These transformation are computed based on the shaded regions in
the magnified area. The dotted sections in the matrix pair are the rows and
columns that can be updated efficiently after the swap.

The finalization phase commences when the shifts occupy the last subdiagonal
positions in the Hessenberg pair. We can now introduce m new poles. The
first new pole is introduced in the final subdiagonal element and swapped up m
positions thereby swapping all remaining shifts down. The second new pole is
now introduced and this course of action continues until the new poles occupy
the last m subdiagonal elements.

We test the tightly-packed RQZ method on randomly generated matrix pairs of
size 600 that are first reduced to Hessenberg pairs with poles at infinity. We run
the RQZ method for shift batches of sizes m = 2, 4, 8, 16, 32. The results are
averaged over 10 runs. The poles are selected following three criteria: always at
infinity (classical QZ), m times the Wilkinson pole of the leading 2×2 block, or
as the eigenvalues of the leading m×m block, the Rayleigh poles.

Figure 3.12 displays the performance in terms of the average number of iterations
per eigenvalue (left) and total number of swaps scaled with n2 (right) in function
of the batch size m for the three types of poles. We observe that the number of
iterations increases significantly for larger m. This effect is most pronounced
with the Wilkinson and Rayleigh poles. Also in terms of the number of swaps
the poles at infinity are the most efficient choice. We attribute this effect to the
spectrum of the randomly generated problems. All, except typically one, of the
eigenvalues are located in one cluster around zero. Likely, due to the increased
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Figure 3.12: On the left the average number of iterations per eigenvalue is
depicted in function of batch size m for three different pole strategies. On the
right the average number of swaps scaled with n2 in function of the batch size
m. These results are for the random problem.

batch size, some of the Wilkinson and Rayleigh poles will somehow be too close
to each other, thereby deteriorating the convergence.

Therefore, we have repeated this experiment with 10 randomly generated matrix
pairs of size 600 having two equally sized clusters of eigenvalues centered around
0 and 10. The results are shown in Figure 3.13. Now the Wilkinson and Rayleigh
poles outperform the poles at infinity in terms of total number of swaps for all
batch sizes indicating that the poles do improve the convergence rate of the
method.

We conclude that we can pack the shifts tightly without a significant degradation
in convergence behavior. The advantages of allowing pole selection remain but
become more problem specific. The packing of the shifts along the subdiagonal
of the Hessenberg pair is optimal. This is trivial in our pole swapping context,
but not in a bulge chasing algorithm [66].

The numerical results shown here are obtained with a Matlab implementation.
A cache efficient implementation of tightly-packed pole swapping algorithms
is studied in Chapter 4, where we show that level-3 BLAS performance
(Section 2.3.4) can reduce CPU times by nearly an order of magnitude.
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Figure 3.13: On the left the average number of iterations per eigenvalue is
depicted in function of batch size m for three different pole strategies. On the
right the average number of swaps scaled with n2 in function of the batch size
m. These are the results for the random problems with two clusters.

3.6 Implicit Q theorem

In this section we prove the following implicit Q theorem for proper Hessenberg
pairs justifying the implicit approach since the result of a rational QZ step is
uniquely determined.

Theorem 3.6.1 (Implicit Q theorem for proper Hessenberg pairs). Let (A,B) be
a regular matrix pair and let Q̂, Q̌, Ẑ, Ž be unitary matrices with Q̂e1 = σQ̌e1,
|σ| = 1, such that,

(Â, B̂) = Q̂∗(A,B)Ẑ and (Ǎ, B̌) = Q̌∗(A,B)Ž,

are both proper Hessenberg pairs having both the same pole tuple Ξ =
(ξ1, . . . , ξn−1), ξi ∈ C̄, with the poles different from the spectrum of the pair.

Then the pairs (Â, B̂) and (Ǎ, B̌) are essentially identical, meaning that,

Â = D∗1ǍD2 and B̂ = D∗1B̌D2, (3.6)

with D1 and D2 unitary diagonal matrices.

The implicit Q theorem guarantees that the unitary equivalence transformations,
which are applied in the direct reduction to a Hessenberg pair and in a rational
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QZ step are essentially unique. Once the reduction or the rational QZ step is
initiated, the outcome is determined.

The remainder of this section contains all ingredients to prove this theorem.
Various related implicit Q theorems already exist. Mastronardi, Vandebril,
and Van Barel [126] provide one for semiseparable plus diagonal matrices
linked to rational Krylov spaces. Pranic, Mach, and Vandebril [80] formulate a
variant for extended Hessenberg plus diagonal matrices linked to general rational
Krylov subspaces as did Berljafa and Güttel for (rectangular) Hessenberg pairs
connected with rational Krylov recurrences [11], see Chapter 7.

The proof we provide here significantly differs from the proof in [11], which
relies on direct computations and utilize the invertibility of B to formulate
the theory for the single matrix setting. We make use of the properties of the
associated Krylov matrices, as done by Watkins for the classical case [138] and
which we summarized in Section 2.3. This rational Krylov connection allows
us to easily prove that the rational QZ algorithm performs nested subspace
iteration accelerated by rational functions.

3.6.1 Rational Krylov matrices and subspaces

We define rational Krylov matrices generated by a matrix pair (A,B), a vector
v, and a driving rational function determined by shifts P and poles Ξ in this
section. These rational Krylov matrices span Krylov subspaces, which, for
consistency, we will name rational Krylov subspaces. The description holds for
regular matrix pairs, so the matrices do not need to be of Hessenberg form.

For the aim of a concise notation we introduce two elementary rational matrices
generated from the pair (A,B) with shift % = µ/ν ∈ C̄ and pole ξ = α/β ∈ C̄:

M(%, ξ) = (νA−µB)(βA−αB)−1,

N(%, ξ) = (βA−αB)−1(νA−µB).
(3.7)

We assume, throughout the remainder of the text, the shift different from the
pole % 6= ξ and since we take inverses, the pole may not be an eigenvalue
ξ /∈ Λ. Notice that M(%, ξ) and N(%, ξ) represent an entire class of matrices
generated by parameters that result in the correct shift and pole. These are all
scalar multiples of one another and as the theory remains scale invariant, every
nontrivial representative is fine.

We remark that if the matrices A and B commute, AB = BA, then also

(βA−αB)(νA−µB) = (νA−µB)(βA−αB),
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and consequently M(%, ξ) = N(%, ξ). In case B is invertible the following
relations hold,

M(%, ξ) = (νAB−1 − µI)(βAB−1 − αI)−1 = (βAB−1 − αI)−1(νAB−1 − µI),

N(%, ξ) = (βB−1A− αI)−1(νB−1A− µI) = (νB−1A− µI)(βB−1A− αI)−1.

(3.8)

This could be helpful to link this analysis to existing theorems of Berljafa &
Güttel [11], and Watkins [138].

The elementary rational matrices are used to define rational Krylov matrices.

Definition 3.6.2 (rational Krylov matrices). Let (A,B) ∈ Cn×n be a regular
matrix pair, v ∈ Cn a nonzero vector, Ξ = (ξ1, . . . , ξk−1), ξi ∈ C̄, the pole tuple
with the poles different from the spectrum, and P = (%1, . . . , %k−1), %i ∈ C̄, the
tuple of shifts distinct from the poles, with k ≤ n. The corresponding rational
Krylov matrices are defined as:

Krat
k (A,B,v,Ξ, P ) =

[
v,M(%1, ξ1)v,M(%2, ξ2)M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v
]
,

Lrat
k (A,B,v,Ξ, P ) =

[
v, N(%1, ξ1)v, N(%2, ξ2)N(%1, ξ1)v, . . . ,

k−1∏
i=1

N(%i, ξi)v
]
.

(3.9)

The following properties of the elementary rational matrices are frequently used
in the remainder of the text.

Lemma 3.6.3. The elementary rational matrices (3.7) satisfy:

I. Commutativity: For shifts %, %̂ different from the poles ξ, ξ̂,

M(%, ξ) M(%̂, ξ̂) = M(%̂, ξ̂) M(%, ξ),

N(%, ξ) N(%̂, ξ̂) = N(%̂, ξ̂) N(%, ξ).
(3.10)

II. Repositioning shifts: For shifts %, %̂ different from the poles ξ, ξ̂,

M(%, ξ) M(%̂, ξ̂) = M(%̂, ξ) M(%, ξ̂),

N(%, ξ) N(%̂, ξ̂) = N(%̂, ξ) N(%, ξ̂).
(3.11)
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III. Inverse: If the shift is not an eigenvalue, % /∈ Λ, and is different from the
pole, % 6= ξ, then,

M(%, ξ)−1 = M(ξ, %),

N(%, ξ)−1 = N(ξ, %).
(3.12)

IV. Shift invariance: For any nonzero vector v ∈ Cn, and parameters %, %̂ 6= ξ,

R(v, M(%, ξ)v) = R(v, M(%̂, ξ)v),

R(v, N(%, ξ)v) = R(v, N(%̂, ξ)v).
(3.13)

Proof. If B is invertible, properties I and II of the Lemma follow from (3.8) and
the property that any matrix commutes with its shifted inverse. For singular B
the same result follows from an elementary continuity argument. Property III
is trivial. For property IV, we consider first the case that ξ 6= ∞. Assuming
% 6=∞, it follows from (3.7) that,

M(%, ξ) = ν

β
(I + (ξ − %)B(A− ξB)−1) ≡ I + (ξ − %)M(∞, ξ),

N(%, ξ) = ν

β
(I + (ξ − %)(A− ξB)−1B) ≡ I + (ξ − %)N(∞, ξ).

(3.14)

The second part of the equation is considered as an equivalence: both sides
belong to the same class of rational matrices but differ by a finite, nonzero
scalar factor. It is clear that both R(v,M(%, ξ)v) = R(v,M(∞, ξ)v) and
R(v, N(%, ξ)v) = R(v, N(∞, ξ)v). This equality holds trivially in case % =∞.
Consequently, the shift invariance property is satisfied for ξ 6= ∞. In case
ξ =∞, assuming % 6= 0, (3.7) reads,

M(%,∞) ≡ %I − M(0,∞), N(%,∞) ≡ %I − N(0,∞), (3.15)

and the shift invariance also follows for a pole at ∞ as the shift can always be
moved to zero. This is trivial in case % = 0.

Theorem 3.6.4 (Nested shift invariance). For any nonzero vector v ∈ Cn, all
shifts %i different from all poles ξj for i, j from 1 to k−1, and an alternative
shift %̂ different from all poles, k ≤ n,

R

(
v,M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v
)

= R
(

v,M(%̂, ξ1)v, . . . ,
k−1∏
i=1

M(%̂, ξi)v
)
,

R

(
v, N(%1, ξ1)v, . . . ,

k−1∏
i=1

N(%i, ξi)v
)

= R
(

v, N(%̂, ξ1)v, . . . ,
k−1∏
i=1

N(%̂, ξi)v
)
.

(3.16)
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Proof. We prove the first relation of (3.16) by induction, the proof for the
second relation proceeds similarly. The case k=1 is trivial, the case k=2 is equal
to the shift invariance property IV of Lemma 3.6.3. Assume now Theorem 3.6.4
holds up to index k and denote this subspace as Uk. We remark that (3.16) also
implies that,

R

(
v,M(%1, ξ1)v, . . . ,

k−1∏
i=1

M(%i, ξi)v
)

= R
(

v,M(%̂1, ξ1)v, . . . ,
k−1∏
i=1

M(%̂i, ξi)v
)
,

(3.17)
for arbitrary shifts %̂i different from all poles. The subspace Uk+1 is equal to:

Uk+1 = R
(

v, M(%1, ξ1)v, . . . ,
k∏
i=1

M(%i, ξi)v
)

= Uk +R
(

k∏
i=1

M(%i, ξi)v
)
.

By the induction hypothesis, the result holds for Uk. We now modify the
additional term in the subspace Uk+1 to prove the result:

Uk+1 = Uk +M(%k, ξk)R
(
k−1∏
i=1

M(%i, ξi)v
)

= Uk +M(%̂, ξk)R
(
k−1∏
i=1

M(%i, ξi)v
)

= Uk +M(%k−1, ξk)R
(
M(%̂, ξk−1)

k−2∏
i=1

M(%i, ξi)v
)

= Uk +M(%̂, ξk)R
(
M(%̂, ξk−1)

k−2∏
i=1

M(%i, ξi)v
)

= Uk +M(%k−2, ξk)R
(
M(%̂, ξk−2)M(%̂, ξk−1)

k−3∏
i=1

M(%i, ξi)v
)

= . . .

= Uk +R
(

k∏
i=1

M(%̂, ξi)v
)

The second equality above applies the shift invariance property IV of
Lemma 3.6.3 to change %k to %̂. This is permitted as

∏k−1
i=1 M(%i, ξi)v is a

vector in Uk. In the third equality the shifts %̂ and %k−1 are interchanged
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based on property II of Lemma 3.6.3. The fourth equality again applies the
shift invariance property IV to change %k−1 to %̂. This is again permitted:
M(%̂, ξk−1)

∏k−2
i=1 M(%i, ξi)v is a vector in Uk based on the induction hypothesis

and (3.17). This reasoning is continued in the fifth equality where %̂ and %k−2 are
interchanged, until eventually all shifts are changed to %̂ in the final equality.

We can now define the rational Krylov subspaces as the column spaces of the
rational Krylov matrices from Definition 3.6.2. It follows directly from the
nested shift invariance property of Theorem 3.6.4 that these subspaces are
independent of the choice of P.
Definition 3.6.5 (rational Krylov subspaces). We define the rational Krylov
subspaces Krat

k and Lrat
k , k ≤ n, associated with the regular pair (A,B) ∈ Cn×n,

a vector v ∈ Cn, and pole tuple Ξ = (ξ1, . . . , ξk−1), assuming the poles different
from the eigenvalues as,

Krat
k (A,B,v,Ξ) = R(Krat

k (A,B,v,Ξ,P)),

Lrat
k (A,B,v,Ξ) = R(Lrat

k (A,B,v,Ξ,P)),
(3.18)

where the shift tuple P is freely chosen, assuming all shifts different from all
poles.

The two rational Krylov subspaces reduce to the same subspace if A and B
commute. A special case is when B is equal to the identity matrix. In this
case the definition is in agreement with earlier definitions. The rational Krylov
subspaces satisfy the following elementary properties.
Lemma 3.6.6 (properties of rational Krylov subspaces). The rational Krylov
subspaces Krat and Lrat generated from (A,B) ∈ Cn×n, v ∈ Cn, and Ξ =
(ξ1, . . . , ξn−1), assuming all poles different from the eigenvalues, satisfy the
following properties.

I. They form a sequence of nested subspaces,

Krat
1 ⊆ Krat

2 ⊆ . . . ⊆ Krat
n and Lrat

1 ⊆ Lrat
2 ⊆ . . . ⊆ Lrat

n . (3.19)

II. For k = 1, . . . , n−1, with the shift %̂ different from all eigenvalues and
poles, and an alternative shift %̌ 6= %̂ we get:

Krat
k (A,B,v,Ξ) =

k−1∏
i=1

M(%̂, ξi) Kk(M(%̌, %̂),v) = Kk

(
M(%̌, %̂),

k−1∏
i=1

M(%̂, ξi) v

)
,

Lrat
k (A,B,v,Ξ) =

k−1∏
i=1

N(%̂, ξi) Kk(N(%̌, %̂),v) = Kk

(
N(%̌, %̂),

k−1∏
i=1

N(%̂, ξi) v

)
,

(3.20)
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which connects rational Krylov subspaces with regular Krylov subspaces.

III. For k = 1, . . . , n−1, and %k /∈ Ξ,

M(%k, ξk) Krat
k (A,B,v,Ξ) ⊆ Krat

k+1(A,B,v,Ξ),

N(%k, ξk) Lrat
k (A,B,v,Ξ) ⊆ Lrat

k+1(A,B,v,Ξ).
(3.21)

IV. If for any k < n, Krat
k = Krat

k+1 or Lrat
k = Lrat

k+1 the subspaces become
respectively M - or N -invariant.

Proof. The nestedness follows directly from the definition. To prove the second
property we rely on Theorem 3.6.4,

Krat
k (A,B,v,Ξ) = R

(
v,M(%̂, ξ1) v, . . . ,

k−1∏
i=1

M(%̂, ξi) v

)

=
k−1∏
i=1

M(%̂, ξi) R
(
k−1∏
i=1

M(ξi, %̂) v,

k−1∏
i=2

M(ξi, %̂) v, . . . , v

)

=
k−1∏
i=1

M(%̂, ξi) R
(
k−1∏
i=1

M(%̌, %̂) v,

k−1∏
i=2

M(%̌, %̂) v, . . . , v

)

=
k−1∏
i=1

M(%̂, ξi) Kk(M(%̌, %̂),v).

The first equality is the definition with P = (%̂, . . . , %̂). The second equality
extracts the last rational term. The third equality applies the nested shift
invariance property of Theorem 3.6.4 to change all shifts ξi to %̌. We end up
with a Krylov subspace in the last equality. The result for Lrat is proven in
a similar way. The third property follows from the second property and the
nestedness of Krylov subspaces, setting %̂ = %k. The fourth property follows
from (3.21) by imposing Krat

k = Krat
k+1 or Lrat

k = Lrat
k+1

We remark that property II states that rational Krylov subspaces are nothing
else than Krylov subspaces whose starting vector is modified by a rational
function determined by the poles Ξ.
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3.6.2 Proper Hessenberg pairs and rational Krylov

In the previous section (A,B) could be any regular pair. Now we’ll see that if
(A,B) is a proper Hessenberg pair, the rational Krylov subspaces and matrices
have a special structure.

Theorem 3.6.7. Let (A,B) ∈ Cn×n be a proper Hessenberg pair having poles
Ξ = (ξ1, . . . , ξn−1) distinct from the eigenvalues. Then for k from 1 to n,

Krat
k (A,B, e1, (ξ1, . . . , ξk−1)) = Ek, (3.22)

while for k from 1 to n−1,

Lrat
k (A,B, e1, (ξ2, . . . , ξk)) = Ek. (3.23)

Proof. We prove the results by induction on the subspace dimension. The case
k = 1 is trivial for both statements. To prove (3.22), assume the result holds
up to dimension k ≤ n−1,

Krat
k (A,B, e1, (ξ1, . . . , ξk−1)) = Ek.

From the nestedness of rational Krylov subspaces, we have by induction,

Ek ⊆ Krat
k+1(A,B, e1, (ξ1, . . . , ξk)).

It remains to be shown that ek+1 ∈ Krat
k+1(A,B, e1, (ξ1, . . . , ξk)). From (3.21)

and the induction hypothesis we deduce,

M(%k, ξk) Ek ⊆ Krat
k+1(A,B, e1, (ξ1, . . . , ξk)), (3.24)

for %k /∈ Ξ. Now consider the vector kk = (βkA−αkB)ek, with αk/βk = ξk.
As βkA− αkB is an upper Hessenberg matrix with a zero in position (k+1, k),
kk ∈ Ek. It follows that,

kk+1 = M(%k, ξk) kk = (νkA−µkB)(βkA−αkB)−1 kk = (νkA−µkB) ek,

is a vector in Ek+1 with kk+1 6= 0 and by (3.24), kk+1 ∈ Krat
k+1. This proves the

first result.

In order to prove (3.23), we can start in a similar way. Assume the result holds
up to dimension k < n−12. We get from the nestedness of rational Krylov
subspaces and the induction hypothesis that,

Ek ⊆ Lrat
k+1(A,B, e1, (ξ2, . . . , ξk+1)).

2For Krat
k , k+1 can be as large as n since (3.22) goes up to ξk−1. For Lrat

k , k+1 is limited
to n−1 as we don’t want to run out of poles.



72 A RATIONAL QZ METHOD

From (3.21) and the induction hypothesis we deduce,

N(%k+1, ξk+1) Ek ⊆ Lrat
k+1(A,B, e1, (ξ2, . . . , ξk+1)),

for %k+1 /∈ Ξ. To complete the proof, we need to show as before that there
exists a pair of vectors `k, `k+1, with `k ∈ Ek and `k+1 ∈ Ek+1 whose (k+1)st
element `k+1 6= 0, that are related as,

`k+1 = N(%k+1, ξk+1) `k = (βk+1A−αk+1B)−1(νk+1A−µk+1B) `k, (3.25)

An explicit construction is not possible in this case. Nonetheless, by (3.25) we
have that (`k, `k+1) must satisfy

(βk+1A−αk+1B) `k+1 = (νk+1A−µk+1B) `k.

From properties I and II of Lemma 3.2.2, we have that the matrix βk+1A−αk+1B
is an upper Hessenberg matrix that admits a block upper triangular partition
with a leading block of size (k+1)×(k+1), while the matrix νk+1A − µk+1B
is a proper upper Hessenberg matrix since the shift %k+1 is different from all
the poles. Observe that all vectors `k ∈ Ek would lead to a vector `k+1 with
element `k+1 = 0 if and only if the first k columns of (βk+1A−αk+1B) would
span the same subspace as the first k columns of (νk+1A−µk+1B). It follows
from property III and IV of Lemma 3.2.2 that this cannot be true. We conclude
that a valid pair (`k, `k+1) must exist.

A direct corollary of the theorem considers the structure of rational Krylov
matrices generated from proper Hessenberg pairs.

Corollary 3.6.8. Let (A,B) ∈ Cn×n be a proper Hessenberg pair with poles
Ξ = (ξ1, . . . , ξn−1) different from the eigenvalues of (A,B) and let (%1, . . . , %n−1)
be a shift tuple different from the poles. Then, for k from 1 to n,

Krat
k (A,B, e1, (ξ1, . . . , ξk−1), (%1, . . . , %k−1)),

and, for k from 1 to n−1,

Lrat
k (A,B, e1, (ξ2, . . . , ξk), (%2, . . . , %k)),

are upper triangular matrices with non-vanishing diagonal elements.

3.6.3 Proof of the implicit Q theorem

We are ready to prove Theorem 3.6.1.
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Proof. Choose a tuple of n−1 shifts P different from the poles Ξ. Corollary 3.6.8
states that Krat

n (Â, B̂, e1,Ξ,P) and Krat
n (Ǎ, B̌, e1,Ξ,P) are n×n nonsingular

upper triangular matrices. The elementary rational matrix M(%, ξ) is
transformed via Q̂ and Q̌ to:

M̂(%, ξ) = Q̂∗M(%, ξ)Q̂ and M̌(%, ξ) = Q̌∗M(%, ξ)Q̌.

It follows that,

Q̂Krat
n (Â, B̂, e1,Ξ,P)

= Q̂

[
e1 M̂(%1, ξ1) e1 . . .

(
n−1∏
i=1

M̂(%i, ξi)
)

e1

]

= Q̂

[
e1 Q̂

∗M(%1, ξ1)Q̂ e1 . . . Q̂∗

(
n−1∏
i=1

M(%i, ξi)
)
Q̂ e1

]

=
[

q̂1 M(%1, ξ1) q̂1 . . .

(
n−1∏
i=1

M(%i, ξi)
)

q̂1

]

= σ

[
q̌1 M(%1, ξ1) q̌1 . . .

(
n−1∏
i=1

M(%i, ξi)
)

q̌1

]

= σQ̌Krat
n (Ǎ, B̌, e1,Ξ,P).

Since the upper triangular matrices Krat
n are nonsingular, the uniqueness of

the QR factorization, stated in Lemma 2.3.3, implies the existence of a unitary
diagonal matrix D1 such that Q̂ = Q̌D1.

It remains to prove that a similar relation holds for the matrices Ẑ and Ž.
Let us first prove that Ẑ and Ž also share a first column up to unimodular
scaling. From the relations (β1Â−α1B̂) = Q̂∗(β1A−α1B)Ẑ and (β1Ǎ−α1B̌) =
Q̌∗(β1A−α1B)Ž, with ξ1 = α1/β1, it follows that,

ẑ1 = Ẑe1 = (β1A−α1B)−1Q̂(β1Â− α1B̂)e1,

ž1 = Že1 = (β1A−α1B)−1Q̌(β1Ǎ− α1B̌)e1.
(3.26)

Since both (β1Â−α1B̂)e1 and (β1Ǎ−α1B̌)e1 reduce to a scalar multiple of e1
and Q̂e1 = σQ̌e1 we get ž1 = σ̃ẑ1. Using Corollary 3.6.8 and similar reasoning
as before, it is shown that the following two QR factorizations are equal,

Ẑ Lrat
n−1(Â, B̂, e1,Ξs,Ps) = σ̃ŽLrat

n−1(Ǎ, B̌, e1,Ξs,Ps),
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with Ξs = (ξ2, . . . , ξn−1) and Ps = (%2, . . . , %n−1). In this case the Ln−1
matrices are of size n×n−1. Uniqueness of the QR factorization implies essential
uniqueness of the first n−1 columns of Ẑ and Ž. Nonetheless also the last
column of Ẑ and Ž are essentially the same as they are orthogonal to the
first n−1 columns. We conclude that Ẑ = ŽD2, with D2 a unitary diagonal
matrix.

When the Hessenberg pair is not proper, uniqueness can only be guaranteed up
to the pole that causes the problem. This is similar to the Hessenberg case. In
practice this is in fact good news as a breakdown signals a deflation.

3.7 Implicit rational subspace iteration

Francis’ QR algorithm [39, 40] effects nested subspace iteration with a
change of coordinate system accelerated by polynomial Krylov subspaces, see
Theorem 2.3.6. Theorem 2.3.8 showed that the convergence behaviour of the
QZ method is also determined by polynomials. This result is generalized in this
section for the rational QZ method.

We first give a result which relates the invariant subspaces of the elementary
rational matrices (3.7) to the deflating subspaces of (A,B). This might help the
reader to gain more insight in the convergence result. The following lemma is
useful in the proof of the next theorem. It makes use of the Hermitian conjugate
of a subspace which is characterized as v∗ ∈ S∗ if and only if v ∈ S.

Lemma 3.7.1. Let (A,B) be a regular matrix pair, µ, ν, α, β ∈ C such that
µβ 6= αν, and S ⊆ Cn. Then,

(βA− αB)S + (νA− µB)S = AS +BS
S∗(βA− αB) + S∗(νA− µB) = S∗A+ S∗B

Proof. We prove the first result for a right subspace, the proof of the second
result is similar. We clearly have that,

(βA− αB)S + (νA− µB)S ⊆ AS +BS,

because for s1, s2 ∈ S we have:

(βA− αB)s1 + (νA− µB)s2 = A(βs1 + νs2) +B(−αs1 − µs2) ∈ AS +BS.

On the other hand, x ∈ AS +BS satisfies,

x =
[
A B

] [y
z

]
,
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for some y, z ∈ S. Consider the invertible matrix T =
[
β ν
−α −µ

]
, which yields:

x =
[
A B

]
(T ⊗ I)(T−1 ⊗ I)

[
y
z

]
=
[
βA− αB νA− µB

] [ŷ
ẑ

]
,

with ŷ, ẑ ∈ S.

The following theorem extends [72, Theorem 1.6.5].

Theorem 3.7.2. Let (A,B) be a regular matrix pair, M(%, ξ) and N(%, ξ) be
two elementary rational matrices generated by (A,B) with % 6= ξ and ξ /∈ Λ
according to (3.7). Then,

I. A subspace Y is right-invariant under N(%, ξ) if and only if Y is a right-
deflating subspace for (A,B).

II. A subspace X ∗ is left-invariant under M(%, ξ) if and only if X ∗ is a
left-deflating subspace for (A,B).

Proof. We prove only the first statement; the second one is similar. It follows
from Lemma 3.7.1 that for S ⊆ Cn,

dim(AS+BS) = dim((βA−αB)S+(νA−µB)S) = dim(S+N(%, ξ)S), (3.27)

with % = µ/ν, ξ = α/β /∈ Λ. Assume S is a right-deflating subspace for (A,B).
According to (2.10) this implies dim(AS + BS) ≤ dim(S), such that also
dim(S +N(%, ξ)S) ≤ dim(S) by (3.27). The latter implies that N(%, ξ)S ⊆ S,
i.e. S is a right-invariant subspace of N(%, ξ). Conversely, if S is a right-invariant
subspace of N(%, ξ) it follows that dim(S + N(%, ξ)S) = dim(S), from (3.27)
and (2.10) we get that S is also a right-deflating subspace of (A,B).

We are now ready to study the subspace iteration of the RQZ method. Starting
with a proper Hessenberg pair (A,B) with Ξ = (ξ1, . . . , ξn−1), a single iteration
of the rational QZ method with shift % and new pole ξ̂n−1 results in a new
proper Hessenberg pair,

(Â, B̂) = Q∗ (A,B)Z,

with Ξ̂ = (ξ2, . . . , ξn−1, ξ̂n−1). This equivalence transformation simultaneously
performs two similarity transformations on the matrices,

M̂(%, ξ) = Q∗M(%, ξ)Q and N̂(%, ξ) = Z∗N(%, ξ)Z, (3.28)

for all % and ξ.

The following theorem formalizes the convergence behavior of the RQZ method.
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Theorem 3.7.3. Consider a single RQZ step (Â, B̂) = Q∗ (A,B)Z, with shift %,
pole tuple Ξ = (ξ1, . . . , ξn−1) prior to the RQZ step, and Ξ̂ = (ξ2, . . . , ξn−1, ξ̂n−1)
afterwards. Assume all poles different from the eigenvalues, and the shift %
different from all eigenvalues and poles. For k = 1, . . . , n−1, this effects subspace
iteration driven by M(%, ξk) and N(%, ξk+1), we get:

R(Q(:, 1 : k)) = M(%, ξk) Ek, and R(Z(:, 1 : k)) = N(%, ξk+1) Ek,
(3.29)

with ξn := ξ̂n−1. The change of coordinate system maps both R(Q(:, 1 : k)) and
R(Z(:, 1 : k)) back to Ek.

Proof. We make use of the result from Lemma 3.6.3, Lemma 3.6.6, Theo-
rem 3.6.7, (3.28) and q1 = γM(%, ξ1) e1 by (3.2). We get,

R(Q(:, 1 : k)) = Q Ek = QKrat
k (Â, B̂, e1, Ξ̂)

= Q

k∏
i=2

M̂(%, ξi) · Kk(M̂(%̌, %), e1)

=
k∏
i=2

M(%, ξi) · Kk(M(%̌, %), Qe1)

=
k∏
i=2

M(%, ξi) · Kk(M(%̌, %),M(%, ξ1)e1)

= M(%, ξk)
k−1∏
i=1

M(%, ξi) · Kk(M(%̌, %), e1)

= M(%, ξk) Ek.

The second equality uses Theorem 3.6.7. The third equality applies part II of
Lemma 3.6.6. The fourth equality relies on (3.28) to change from M̂ to M .
The fifth equality uses the expression for q1, the sixth uses the commutativity
property, and the last equality again applies Lemma 3.6.6 and Theorem 3.6.7.

The second result follows a similar reasoning. The only difference is the relation
between z1 and e1. Starting from the same argument as in (3.26) we get, for
some constants γ, γ̌ and γ̃,

z1 = γ(β2A−α2B)−1q1 = γ̌ (β2A−α2B)−1M(%, ξ1) e1 = γ̃ N(%, ξ2) e1.
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A single shifted RQZ step will execute a QR step with shift % on the entire
space simultaneously with RQ steps having shifts ξi on selected subspaces. The
shift % is rapidly moving from top to bottom and thus affects all subspaces.
The poles on the other hand are slowly moving upwards, one row during each
step, and as such do not act on all subspaces in a single RQZ step. The shifts
will rapidly initiate convergence at the bottom, the poles slowly push converged
eigenvalues to the top. This is an explanation for why, in the classical QZ
algorithm, the zero eigenvalues in B appear at the top: they are pushed there
by the poles at infinity [137]. Moreover, it is also clear from the analysis that
picking a shift equal to a pole will lead to cancellation in some of the factors
thereby slowing down convergence.

Note that in the formulation of Theorem 3.7.3 the shift and poles are assumed
to be different from the eigenvalues of the matrix pair. This is imposed to
ensure that the required inverses exist. However, in practical implementations,
these parameters will typically converge towards an eigenvalue. This is in fact
a desirable situation as it will lead to deflations as we will show in Section 3.8.

In the QZ algorithm [83], all poles are at∞ and the two driving functions reduce
to M(%,∞) and N(%,∞) which is equivalent to AB−1 − %I and B−1A − %I,
cfr. Theorem 2.3.8. This connection also explains why we assumed B invertible
in Theorem 2.3.7 and Theorem 2.3.8. A proper Hessenberg pair in Hessenberg,
triangular form has all poles at ∞ and as the poles are required to be different
from the eigenvalues for our theory to hold, B should be nonsingular.

In the RQZ method, the poles can be chosen freely and as such they can be
utilized to influence the convergence of the method as was illustrated in the
numerical experiments of Sections 3.4.2 and 3.5.3. Note that, as the poles only
shift one row up during every RQZ step, it takes n−1 iterations before a pole
has moved from the bottom to the top and has influenced all vectors in the
subspace iteration.

A more modular convergence analysis for pole swapping algorithms is included
in [16]. In this paper, the subspace iteration that is executed by a single swap
is studied based on Theorem 3.6.7. Furthermore, it is shown how these mini-
iterations can be combined to prove Theorem 3.7.3 for the RQZ method and,
more general, how similar results can be deduced for any pole swapping method,
e.g. a reverse RQZ step where a shift is swapped from the bottom to the top of
the pencil.
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3.7.1 An example of a rational filter

To further clarify the result of Theorem 3.7.3 consider the simplified case where
all the poles of the Hessenberg pair are equal to same value ξ different from the
eigenvalues of (A,B). Assume that the RQZ algorithm is applied s times on
this proper Hessenberg pair with the same shift %. At the end of each RQZ step
the last pole is again restored to ξ. Then the subspace iterations, as considered
from the initial pair, are given by,

Q : Ek →M(%, ξ)sEk, and Z : Ek → N(%, ξ)sEk.

Denote q(z) = (z − %)/(z − ξ) and let λ1, . . . , λn be the eigenvalues of the pair
(A,B), so that q(λi)s is the rational filter that is implicitly applied during these
s iterations to λi. Assume the eigenvalues are ordered such that,

|q(λ1)s| ≤ |q(λ2)s| ≤ . . . ≤ |q(λn−1)s| ≤ |q(λn)s|,

then the convergence factor of an eigenvalue at the end of the Hessenberg pencil
is given by |q(λ1)s|/|q(λ2)s|, while the convergence factor at the top of the
Hessenberg pencil is given by |q(λn−1)s|/|q(λn)s|. As such, a good choice of
both poles and shifts can accelerate convergence and lead to deflations.

As a concrete example consider a problem of size 11 with eigenvalues located
on the unit circle in the complex plane. Figure 3.14 shows the absolute value of
the rational filter after s=2 iterations for two different choices for the rational
function q. Pane (a) shows the filter, q∞(z)2, with shift % = −0.95 and all the
poles at ∞. This situation corresponds to the QZ method applied twice with
the same shift to a Hessenberg, triangular pair. The shift % is located close to
the eigenvalue λ1=− 1 such that |q∞(λ1)2| = 2.5 · 10−3 is the minimal value
of the filter over all eigenvalues. The convergence factor of λ1 at the end of
the pencil is approximately 8.22 · 10−3. At the top of the pencil there is no
convergence in this case as |q(λn−1)2|/|q(λn)2| = 1. Pane (b) shows the same
experiment but this time the poles are located at ξ = 0.1+1i which is in the
vicinity of another eigenvalue. This situation corresponds to the RQZ method
applied twice with the same shift to a Hessenberg pair with Ξ = (ξ, . . . , ξ). The
rational filter, qξ(z)2, leads to a convergence factor of λ1 at the end of the pencil
of approximately 1.21 · 10−2. The convergence of λ1 at the end of the pencil is
slower with q2

ξ compared to q2
∞. However, q2

ξ will also lead to convergence at the
top of the pencil as the convergence factor is |q(λn−1)2|/|q(λn)2| ≈ 7.46 · 10−3.
We observe that using qξ leads to convergence of another eigenvalue, where q∞
does not.

It is clear that both the shifts and the poles can accelerate the convergence but
they do influence each other.
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(a) Filter with ξ =∞
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(b) Filter with ξ = 0.1 + 1i

Figure 3.14: Logarithm of the absolute value of the rational filter, |q(λi)s|,
after s = 2 iterations with % = −0.95, and ξ either at ∞ or at 0.1 + 1i. The
eigenvalues λi are shown with circles, the shift % is indicated with a star, the
pole with a pentagon. Darker regions agree with convergence at the end of the
pencil and lighter regions with convergence at the top of the pencil.

When the shifts are changed in every iteration and the poles of the Hessenberg
pair are not the same then the filter q becomes dependent on the index k and
will be a product of terms with different shifts,

qk(λ) =
s∏
i=1

(λ− %i)/(λ− ξ(i)
k ), (3.30)

with ξ(i)
k the pole at iteration i in position k (or k+1) for Q (or Z) as shown in

Theorem 3.7.3.

Provided a good choice of shifts and poles is made during repeated application
of the RQZ algorithm the pair (A,B) will converge to a pair of upper triangular
matrices.

3.8 Perfect shifts in rational QZ

The previous section studied the convergence of the rational QZ method by
exploiting the connection with rational Krylov to analyze the underlying
subspace iteration. In this section, we take a different approach and show
that if we have a shift % at our disposal that is an exact eigenvalue of the proper
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Hessenberg pencil, then a single rational QZ step deflates it. This result is
related to recent work on perfect shifts in the QR method [82].

We remark that, unlike the results in Sections 3.6 and 3.7, Theorem 3.8.1 does
not assume the shift and poles to be different from the eigenvalues.

Theorem 3.8.1. Let A − λB be an n×n proper Hessenberg pencil with pole
tuple Ξ = (ξ1, . . . , ξn−1), where the poles are not necessarily distinct from the
eigenvalues. Furthermore, let % ∈ C̄ be an eigenvalue of A − λB with % /∈ Ξ.
Then we have that a rational QZ step with shift % on A−λB leads to a deflation
in the last row in exact arithmetic.

Proof. Consider H = [h1, . . . ,hn] := A − %B which is a proper Hessenberg
matrix since hi+1,i 6= 0 for i = 1, . . . n − 1 as % /∈ Ξ. H is also singular
as det(A − %B) = 0 by assumption. It follows from the properness of the
Hessenberg structure in H that the subspace generated by its n − 1 first
columns, R (h1, . . . ,hn−1), is of maximal dimension n− 1. In combination with
the singularity, it is clear that the following property is satisfied:

hn ∈ R(h1, . . . ,hn−1). (3.31)

The first step in the rational QZ method is to introduce the shift % in A− λB
by rotating the first two rows of the pencil with an appropriate rotation Q∗1:2.
This is always possible thanks to the properness of the pencil. The subscript in
the equivalence transformations indicates on which rows or columns they act.
We get,

Â− λB̂ := Q∗1:2(A− λB),

such that Ξ̂ = (%, ξ2, . . . , ξn−1). Merely rotating the first two rows does not affect
the properness, so Â− λB̂ is still a proper Hessenberg pencil. The Hessenberg
matrix Ĥ := Â − %B̂ is however no longer proper as ĥ2,1 = 0. Nonetheless,
(3.31) is preserved for Ĥ:

ĥn ∈ R(ĥ1, . . . , ĥn−1), (3.32)

as the column spaces clearly do not change under the transition from H to Ĥ.

The second step in the rational QZ method is to swap % to position n, n− 1.
This is done by an equivalence,

Ǎ− λB̌ = Q∗2:n(Â− λB̂)Z1:n−1,

such that Ǎ − λB̌ is a Hessenberg pencil with Ξ̌ = (ξ2, . . . , ξn−1, %). We will
now show that this pencil cannot be proper. Denote Ȟ := Ǎ− %B̌ which is a
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Hessenberg matrix with ȟn,n−1 = 0. Property (3.31) for H and (3.32) for Ȟ
still holds in a similar fashion for Ȟ:

ȟn ∈ R(ȟ1, . . . , ȟn−1), (3.33)

because Q∗2:n does not change the column spaces and Z1:n−1 is an invertible
transformation on the first n− 1 columns such that,

R(ȟ1, . . . , ȟn−1) = R(ĥ1, . . . , ĥn−1) = R(h1, . . . ,hn−1).

Combining (3.33) and ȟn,n−1 = 0 directly implies that also ȟn,n = 0 by the
Hessenberg structure of Ȟ. This in turn means that Ǎ− λB̌ is deflatable in its
last row.

Remark 3.8.2. Theorem 3.8.1 does not hold in floating point arithmetic as the
effect of shift blurring may cause ȟn,n−1 6= 0. It cannot be guaranteed that a
single iteration will suffice.
Remark 3.8.3. We point out that Theorem 3.8.1 holds in a similar fashion
for a perfect pole. If we introduce an eigenvalue as a pole at the end of the
subdiagonal, it will cause a deflation in the first columns of A− λB once it has
been swapped to the first subdiagonal position. This under the assumptions
that the pole is not yet present in Ξ and that all operations are carried out in
exact arithmetic.

3.9 Conclusion

In this chapter we proposed a rational QZ algorithm for the numerical solution
of the dense, unsymmetric, generalized eigenvalue problem. The new algorithm
operates on matrix pairs in Hessenberg, Hessenberg form rather than the
Hessenberg, triangular form used in the classical QZ method. Hessenberg pairs
link to rational Krylov and the associated poles are encoded in the subdiagonal
elements of both Hessenberg matrices. We presented a backward stable algorithm
to compute the swapping transformations. A direct reduction method of a
regular matrix pair to Hessenberg, Hessenberg form was proposed. Moreover,
we have demonstrated that a good choice of poles can lead to premature middle
deflations during the reduction phase. The iterative rational QZ algorithm
differs from the classical QZ algorithm in the sense that also poles can be
introduced in each QZ step. Numerical experiments confirm that a good choice
of poles allows the RQZ method to outperform the QZ algorithm by reducing
the number of iterations per eigenvalue. The implicit chasing technique is
justified by an implicit Q theorem, which is proved in a novel manner operating
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directly on the matrix pair and exploiting the connections with rational Krylov.
Our theoretical analysis revealed that an RQZ iteration implicitly performs
nested subspace iteration accelerated by rational functions. Finally, we proved
an exactness result which shows that the RQZ method deflates a perfect shift
in a single iteration.



Chapter 4

A multishift, multipole
rational QZ method with
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4.1 Introduction

The rational QZ method that we presented in the previous chapter is useful
to solve the unsymmetric generalized eigenvalue problem defined by a pair of
matrices A,B ∈ Fn×n, F ∈ {C,R}. The method acts on pencils in Hessenberg,
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Hessenberg form instead of the Hessenberg, triangular form used in the QZ
method. It relies on pole swapping instead of bulge chasing.

Both the single shift RQZ method and the RQZ method with tightly-packed
shifts, as formulated in the previous chapter, are applicable to real- and
complex-valued pencils. However it requires complex arithmetic for real-valued
pencils having complex conjugate eigenvalues. The RQZ method computes the
generalized Schur form (2.12) of (A,B) and not the real generalized Schur form
(2.13).

In the current chapter we introduce the multishift, multipole RQZ method which
acts on pencils in block Hessenberg form. The main benefit of using shifts and
poles of higher multiplicity is that complex conjugate pairs of shifts and poles
can be represented in real arithmetic for real-valued pencils.

This is similar to the well-known implicit double-shift QR step introduced by
Francis [40] and the double-shift QZ step [83] we discussed in Chapter 2. The
focus of this chapter is thus on the case F = R. The multishift, multipole
RQZ method no longer converges to the triangular, triangular pencil of the
generalized Schur form (2.12). Instead, for A,B ∈ Rn×n, it will converge to the
generalized real Schur form (2.13).

The remainder of this chapter consists of two parts. Sections 4.2 and 4.3 make up
the theoretical part. In Section 4.2, we study matrix pencils in block Hessenberg
form. We extend the definition of properness to block Hessenberg pencils, and
define their pole pencil and pole tuple. We show how the pole tuple can be
altered by changing pole blocks at the edge of the pencil and by swapping
neighboring pole blocks. The multishift, multipole RQZ step follows directly
from this discussion. Section 4.3 extends the implicit Q theorem for Hessenberg
pencils (Theorem 3.6.1) to block Hessenberg pencils and briefly discusses the
convergence behaviour of the multishift, multipole method.

In the second part of the chapter, we follow a more practical approach and
discuss how a multishift, multipole RQZ method can be implemented in finite
precision arithmetic. The QR method suffers from a degraded performance
when moderate to large shift multiplicities are used. Watkins [135] studied this
phenomenon and demonstrated that shifts become blurred during a QR iteration
of higher shift multiplicity. This severely decreases the effectiveness of the shifts.
For the QR method, this issue is mitigated in the small bulge multishift variant
introduced by Braman, Byers & Mathias [14]. This approach is extended to the
QZ method by Kågström & Kressner [58]. In Section 4.4, we demonstrate that
the multishift, multipole RQZ method is also prone to numerical issues when
shifts and poles of moderate to large multiplicities are used. To overcome the
numerical difficulties, we propose a multishift, multipole RQZ method that uses
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tightly-packed, small blocks. Specifically, blocks of dimension 2×2 for complex
conjugate shifts and poles in real pencils and of dimension 1×1 for real shifts
and poles in real pencils and in complex pencils. In Section 4.4, we pay special
attention to the backward stability of the swapping operations that are required
in the algorithm.

The last tool we adapt from recent improvements to the QR [15] and QZ
[58] methods to the RQZ method is the use of advanced deflation strategies.
Specifically we implement the aggressive early deflation technique during the
RQZ iteration in order to obtain level-3 BLAS performance. This is discussed
in Section 4.5.

The resulting methods are implemented as part of the Fortran package libRQZ
which is made publicly available at numa.cs.kuleuven.be/software/rqz.
Section 4.6 illustrates the performance of libRQZ with some numerical
experiments. We conclude the chapter in Section 4.7.

4.2 Block Hessenberg pencils

In the first part of this section we define block Hessenberg matrices and pencils
and study their characteristics. The second part of this section uses the rational
Krylov theory from Section 3.6 to prove that rational Krylov spaces generated
from block Hessenberg pencils have a block structure. The third and last part
of this section describes two relevant operations on a block Hessenberg pencil.

4.2.1 Definitions and elementary results

We first define a block upper triangular matrix and the notation we will use for
it.

Definition 4.2.1. A matrix R ∈ Fn×n is called a block upper triangular matrix
with block partition s = (s1, . . . , sm), s1+ . . .+sm = n, if it admits the form,

R11 R12 . . . R1m
R22 . . . R2m

. . .
...

Rmm

 , (4.1)

with block Rjk of size sj×sk for 1 ≤ j ≤ k ≤ m. The vector s defines the sizes
of the blocks and is called the partition vector. For the sake of clarity, the block
partition can be explicitly denoted as R(s1,...,sm) or Rs.

numa.cs.kuleuven.be/software/rqz
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A special case of a block upper triangular matrix is a block diagonal matrix Ds

in which all off-diagonal blocks are zero:

Ds =


D11

D22
. . .

Dmm

 . (4.2)

We sometimes use the notation Ds = diag(D11, D22, . . . , Dmm) for block
diagonal matrices. Further note that ifRs is a nonsingular block upper triangular
matrix, R̂s = R−1

s is also a block upper triangular matrix with an identical
block partition s.

Next we define a block upper Hessenberg matrix based on the definition of a
block upper triangular matrix.

Definition 4.2.2. A matrix H ∈ Fn×n is called a block upper Hessenberg
matrix with block partition s = (s1, . . . , sm), s1+ . . .+sm = n−1, if it admits
the form,

Hs =
[

hT11 h12
H21 h22

]
, (4.3)

with H21 an (n−1)×(n−1) block upper triangular matrix with block partition
s, h11 and h22 vectors of length n−1 and h12 a scalar.

Definition 4.2.2 is now extended in an evident manner for matrix pencils. In
addition to that, we also introduce the notion of the pole pencil and the pole
tuple of a block Hessenberg pencil.

Definition 4.2.3. The n×n matrix pencil (A,B) is called a block upper
Hessenberg pencil with block partition s = (s1, . . . , sm) if both A and B are
block upper Hessenberg matrices with a coinciding block partition,

A =
[

aT11 a12
A21 a22

]
, B =

[
bT11 b12
B21 b22

]
, (4.4)

and if A21, B21 (n−1)×(n−1) are both block upper triangular matrices having
block partition s = (s1, . . ., sm). The block upper triangular pencil (A21, B21)
in (4.4) is called the pole pencil of (A,B). If the pole pencil is regular, the poles
Ξ(A,B) are defined as the eigenvalues of the pole pencil, Λ(A21, B21). Since
(A21, B21) admits the partition s = (s1, . . . , sm), the pole tuple,

Ξ(A,B) = Λ(A21, B21) = (Ξ1, . . . ,Ξm) = ({ξ1
1 , . . . , ξ

1
s1
}, . . . , {ξm1 , . . . , ξmsm}),

(4.5)
admits the same partition. This imposes no specific ordering of the poles within
a block but the mutual blocks are ordered.
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The previous definitions are illustrated in more detail in the next example.
Example 4.2.4. The n×n matrices A, B form a block Hessenberg pencil with
partition vector s = (s1, . . . , sm), if they can be partitioned as:

aT1,1 aT1,2 . . . aT1,m a1,m+1
A2,1 A2,2 . . . A2,m a2,m+1

A3,2 . . . A3,m a3,m+1
. . .

...
...

Am+1,m am+1,m+1

 ,


bT1,1 bT1,2 . . . bT1,m b1,m+1
B2,1 B2,2 . . . B2,m b2,m+1

B3,2 . . . B3,m b3,m+1
. . .

...
...

Bm+1,m bm+1,m+1

, (4.6)

with all subdiagonal blocks Aj+1,j , Bj+1,j of size sj×sj (square) and s1 + . . .+
sm = n−1. As a specific example, the pencil (A,B) is a 9×9 block upper
Hessenberg pencil with block partition s = (2, 1, 3, 2) if it has the form:

× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×

× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

× × ×
× × ×





× × × × × × × × ×
× × × × × × × × ×
× × × × × × × × ×

× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

× × ×
× × ×




, .

The shaded part of the matrices is the pole pencil which is clearly in block
upper triangular form with partition s = (2, 1, 3, 2). The pole tuple is in this
case given by,

Ξ(A,B) = (Ξ1 = {ξ1
1 , ξ

1
2}, Ξ2 = {ξ2

1}, Ξ3 = {ξ3
1 , ξ

3
2 , ξ

3
3}, Ξ4 = {ξ4

1 , ξ
4
2}).

We remark that a given block Hessenberg pencil can admit more than
one partition. If (A,B) is a block Hessenberg pencil with partition s =
(s1, . . . , sk, sk+1, . . . , sm), it also admits the partition ŝ = (s1, . . . , sk +
sk+1, . . . , sm). Consecutive blocks can be grouped together. Similarly, every
n×n pencil (A,B) can be considered a block Hessenberg pencil with the trivial
partition (n−1). We say that smax = (s1, . . . , sm) is the maximal partition of a
block Hessenberg pencil if none of its blocks can be split into smaller blocks.
For example, a Hessenberg pencil has maximal partition smax = (1, 1, . . . , 1),
but admits any other partition. The cumulative partition vector sc of a block
Hessenberg pencil with partition s = (s1, . . . , sm), is defined as:

sc = (s1, s1 + s2, . . . ,

m∑
i=1

si = n−1). (4.7)
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The last definition we generalize from the Hessenberg pencils of the RQZ method
to the block Hessenberg pencils for the multishift, multipole RQZ method is the
concept of properness or irreducibility. Properness of the pencil guarantees that
there are no obvious options for deflations that split the problem into smaller,
independent problems.

Definition 4.2.5. An n×n block upper Hessenberg pair (A,B) with partition
s = (s1, . . . , sm) is said to be proper (or irreducible) if:

I. Its pole pencil is regular,

II. The first block column of A− λB of size (s1+1)×s1,[
aT1,1 − λbT1,1
A2,1 − λB2,1

]
,

does not have a zero according to Definition 2.1.5,

III. The last block row of (A,B) of size sm×(sm+1),[
Am+1,m − λBm+1,m am+1,m+1 − λbm+1,m+1

]
,

does not have a zero according to Definition 2.1.5.

We remark that condition III is the same as condition II for the pertransposed
pencil. Furthermore observe that if (A,B) is a Hessenberg pair then the
conditions of Definition 4.2.5 reduce to the same conditions as Definition 3.2.1.
Conditions II also ensures that property IV of Lemma 3.2.2 is satisfied within
the first block column. We illustrate the notion of (im)properness of a block
Hessenberg pencil on a small example to clarify Definition 4.2.5.

Example 4.2.6. Consider the 4×4 real-valued block Hessenberg pencil (A,B)
with maximal partition (2, 1) given by:
−0.3 0.075 0.5 0.25
0.395 0.52 −0.35 2
−0.14 0.86 1.35 −0.8

1 0.85

 ,

−0.15 −0.6 0.15 −1.5
0.16 0.94 −5 1.35
−0.12 −0.08 −2.4 −1

0.2 1.8

 . (4.8)

Condition I of Definition 4.2.5 is satisfied, the pole pencil is regular and the
pole tuple of (A,B) is given by:

Ξ = ({1.5 + i
√

15/8, 1.5− i
√

15/8}, 5). (4.9)

The 2×2 block thus contains a pair of complex conjugate poles. Condition III of
Definition 4.2.5 is also satisfied. For the last block row of (A,B), we clearly have
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that R(
[
1 0.85

]
) 6= R(

[
0.2 1.8

]
). Notice that this implies that we cannot

simultaneously create a zero in position (4, 3) of both A and B by rotating the
last two columns. The block Hessenberg pencil (4.8) is however improper since
Condition II of Definition 4.2.5 is violated. We have that R(a1) 6= R(b1), but
R(a1,a2) = R(b1, b2). If we compute an orthonormal basis Q1 ofR(a1,a2) and
extend this upto an orthonormal matrix Q =

[
Q1 q2

]
, then (Â, B̂) = QT (A,B)

has zero elements in positions (3, 1) and (3, 2). This deflates the complex
conjugate pair of poles in (4.9) as eigenvalues of the pencil.

The next lemma shows that any proper block Hessenberg pair can be transformed
to a proper Hessenberg pair with the same poles.

Lemma 4.2.7. Given an n×n proper block Hessenberg pair (A,B) with
partition s = (s1, . . . , sm) and accordingly partitioned poles Ξ(A,B). Then
there exist n×n unitary block diagonal matrices Q,Z,

Q = diag(1, Q1, . . . , Qm) and Z = diag(Z1, . . . , Zm, 1), (4.10)

with Qj, Zj unitary matrices of size sj×sj, such that (Â, B̂) = Q∗(A,B)Z
is a proper Hessenberg pair according to Definition 3.2.1 with poles Ξ =
(π1(Ξ1), . . . , πm(Ξm)). Here, πj(Ξj) is a permutation of ξj1, . . . , ξjsj .

Proof. Since (A,B) is a proper block Hessenberg pencil, the pole pencil is
regular and any Schur decomposition of it reduces the block Hessenberg pair
to a Hessenberg pair with the same pole tuple as the block Hessenberg pencil.
The order of the poles in the Hessenberg pair is, however, dependent on the
Schur decomposition.

Moreover, since the pole pencil is a block upper triangular pencil with m
blocks, m independent Schur decompositions can be combined as in (4.10). The
pole tuple of the Hessenberg pencil is in this case clearly as described: the
poles of the different blocks remain mutually ordered, but within a block any
order, or permutation πj , of the poles is permissible. It remains to verify that
conditions II and III of Definition 4.2.5 are preserved under this transformation.
Denote Q̂ = diag(Q1, . . . , Qm) and Ẑ = diag(Z1, . . . , Zm), with Qj , Zj as in
(4.10). Then,

Â = Q∗AZ = diag(1, Q̂∗)
[

aT11 a12
A21 a22

]
diag(Ẑ, 1) =

[
aT11Ẑ a12

Q̂∗A21Ẑ Q̂∗a22

]
,

B̂ = Q∗BZ = diag(1, Q̂∗)
[

bT11 b12
B21 b22

]
diag(Ẑ, 1) =

[
bT11Ẑ b12

Q̂∗B21Ẑ Q̂∗b22

]
.
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The first block column of (Â, B̂) is equal to,([
âT1,1
Â2,1

]
,

[
b̂T1,1
B̂2,1

])
=
[
1

Q∗1

]([
aT1,1
A2,1

]
,

[
bT1,1
B2,1

])
Z1.

The left and right multiplication of the first block column of (A,B) with unitary
matrices clearly preserves condition II of Definition 4.2.5. Also condition III is
preserved under the equivalence transformation of (4.10). This directly implies
that the resulting Hessenberg pair is also proper according to Definition 3.2.1.

We remark that since a real-valued block Hessenberg pencil can have complex
conjugate pairs of poles, its proper Hessenberg form of Lemma 4.2.7 will be
complex-valued.

4.2.2 Rational Krylov and block Hessenberg pencils

In this section we study the structure of rational Krylov subspaces generated
by proper block Hessenberg matrices. These results are useful for the analysis
of the pole introduction operation introduced in Section 4.2.3 and to study
uniqueness of a multishift, multipole RQZ step in Section 4.3.

We use the same notational conventions as in Chapter 3 and rely on the
elementary rational matrices M(%, ξ) and N(%, ξ) of (3.7) to simplify notation.
We will often use the properties of Lemma 3.6.3. One additional useful property
is the merging of two rational matrices into one:

M(%, ξ1)M(ξ1, ξ2) = M(%, ξ2),

N(%, ξ1)N(ξ1, ξ2) = N(%, ξ2),
(4.11)

which is possible when there is a pole equal to a shift.

The following theorem is a block generalization of Theorem 3.6.7 and shows
that the rational Krylov subspaces Krat and Lrat have a specific structure if
they are generated from a proper block Hessenberg pair.

Theorem 4.2.8. Given an n×n proper block Hessenberg pair (A,B) with
partition s = (s1, . . ., sm), cumulative partition sc, poles Ξ = (Ξ1, . . . ,Ξm)
with Ξi = {ξi1, . . . ξisi} that are all different from the eigenvalues. Then for
j = 0, 1, . . . ,m,

Krat
sc
j
+1(A,B, e1, (Ξ1, . . . ,Ξj)) = Esc

j
+1, (4.12)

with sc0 ≡ 0. While for j = 1, . . . ,m,

Lrat
sc
j

(A,B,z1, (Ξ̆1,Ξ2, . . . ,Ξj)) = Esc
j
, (4.13)
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with Ξ̆1 = {ξ1
1 , . . . , ξ

1
s1−1}, and z1 the right eigenvector of the pole pencil

corresponding with pole ξ1
s1
. Here ξ1

s1
can be any of the poles in Ξ1.

Proof. We rely on the transformation (Â, B̂) = Q∗(A,B)Z from proper block
Hessenberg pencil (A,B) to proper Hessenberg pencil (Â, B̂) as defined in
Lemma 4.2.7. Denote with Ξ̂ = (ξ1, . . . , ξn−1) the pole tuple of the proper
Hessenberg pair (Â, B̂) after renumbering. Note that, by construction, in (4.10),
q1 = e1 and denote M̂(%, ξ) = Q∗M(%, ξ)Q as the elementary rational matrix
(3.7) in terms of (Â, B̂). Further we apply Theorem 3.6.7 to (Â, B̂) such that
for k from 1 to n,

Ek = Krat
k (Â, B̂, e1, (ξ1, . . . , ξk−1)) =

k−1∏
i=1

M̂(%̂, ξi) · Kk(M̂(%̌, %̂), e1)

= Q∗
k−1∏
i=1

M(%̂, ξi) · Kk(M(%̌, %̂), q1) = Q∗Krat
k (A,B, e1, (ξ1, . . . , ξk−1)).

Multiplying both sides of this equation with Q and using that (4.10) implies
that QEk = Ek for k ∈ {1, sc1 + 1, . . . , scm + 1 = n}, proves the first part of the
theorem. The second part of the theorem can be proven in an analogous manner.
Denote N̂(%, ξ) = Z∗N(%, ξ)Z as the second elementary rational matrix (3.7) in
terms of (Â, B̂) and apply again Theorem 3.6.7 to (Â, B̂) such that for k from
1 to n−1,

Ek = Lrat
k (Â, B̂, e1, (ξ2, . . . , ξk)) =

k∏
i=2

N̂(%̂, ξi) · Kk(N̂(%̌, %̂), e1)

= Z∗
k∏
i=2

N(%̂, ξi) · Kk(N(%̌, %̂), z1) = Z∗Lrat
k (A,B,z1, (ξ2, . . . , ξk)).

Now multiply both sides with Z and again use (4.10) to show that ZEk = Ek
for k ∈ {sc1, . . . , scm, n} and the second part of the theorem is proven. Recall
from Lemma 4.2.7 that z1 is the right eigenvector of the pole pencil related to
ξ1 and that ξ1 can be any of the poles of Ξ1 since for any ξ1

j there exists a block
Schur decomposition (4.10) that places ξ1

j as the first pole in the Hessenberg
pencil (Â, B̂).

4.2.3 Manipulating poles of block Hessenberg pencils

Throughout this section, the pencil (A,B) is assumed to be an n×n proper
block Hessenberg pencil with maximal partition s = (s1, . . . , sm) and pole tuple
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Ξ = (Ξ1, . . . ,Ξm), where Ξj = {ξj1, . . . , ξjsj}. All poles are assumed different
from the eigenvalues.

We review two different operations to change the pole tuple Ξ. The first
operation changes the first or last ` poles of the pencil, the second operation
swaps two adjacent pole blocks Ξi and Ξi+1.

Changing poles at the boundary The first ` = s1+ . . .+si = sci poles in the
first i pole blocks Ξ1, . . . ,Ξi can be changed to ` new poles P = {%1, . . . , %`}.
We assume P distinct from the original poles. For this purpose consider the
vector,

x = γ
∏̀
j=1

M(%j , ξj) e1, (4.14)

with ξ1, . . . , ξ` the poles of Ξ1, . . . ,Ξi. The following procedure can be used to
compute x,

x← e1
for j = 1, . . . , `[

x← γj M(%j , ξj)x
(4.15)

The scalars γj can be chosen as some suitable scaling factors. Now, just like
previously, compute a unitary matrix Q such that,

Q∗x = αe1. (4.16)

We claim that the new poles P are introduced in the block Hessenberg pair by
updating (Â, B̂) = Q∗(A,B). Specifically, (Â, B̂) is a block Hessenberg pair
with maximal partition ŝ = (`, si+1, . . . , sm) and poles Ξ̂ = (P,Ξi+1, . . . ,Ξm).

From (3.20) and Theorem 4.2.8 we have that,

x ∈ Krat
`+1(A,B, e1,Ξ) = E`+1. (4.17)

This implies that Q in (4.16) is of the form diag(Q`+1, I), with Q`+1 an
(`+1)×(`+1) unitary matrix. It follows that the first block Ξ̂1 in (Â, B̂) is
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indeed of size `. Furthermore, for j = 0, 1, . . . ,m− i+ 1,

Krat
ŝc
j
+1(Â, B̂, e1, (P,Ξi+1, . . . ,Ξm)) =

ŝcj∏
k=1

M̂(%̂, ξ̂k) · Kŝc
j
+1(M̂(%̌, %̂), e1)

= Q∗M(%̂, %1) . . .M(%̂, %`)M(%̂, ξ`+1) . . .M(%̂, ξŝc
j
) · Kŝc

j
+1(M(%̌, %̂), q1)

= Q∗M(%̂, %1) . . .M(%̂, %`)M(%̂, ξ`+1) . . .M(%̂, ξŝc
j
) · Kŝc

j
+1(M(%̌, %̂),

∏̀
k=1

M(%k, ξk)e1)

= Q∗M(%̂, ξ1) . . .M(%̂, ξ`)M(%̂, ξ`+1) . . .M(%̂, ξŝc
j
) · Kŝc

j
+1(M(%̌, %̂), e1)

= Q∗Krat
ŝc
j
+1(A,B, e1, (Ξ1, . . . ,Ξi,Ξi+1, . . . ,Ξm))

= Q∗Eŝc
j
+1 = Eŝc

j
+1.

In the first equality we used (3.20), we applied M̂ = Q∗MQ in the second
equality, and combined (4.14) with (4.16) to get q1 =

∏`
k=1 M(%k, ξk)e1 in the

third equality. The fourth equality uses the commutativity of the M matrices
and the property of (4.11). This results in the rational Krylov subspace of the
original pencil with the original poles in the fifth equality and by Theorem 4.2.8
we know that this is equal to Eŝc

j
+1. Finally, since Q has a block diagonal

structure, it does not affect the Eŝc
j
+1 for the given sizes. It is clear that (Â, B̂)

is a proper block Hessenberg pencil with partition ŝ = (`, si+1, . . . , sm) by
construction. The last poles are unchanged by the block diagonal structure of
Q and the first ` poles are changed to P which follows from the uniqueness of
block Hessenberg pencils, see Theorem 2.3.4.

We remark that in order to compute the vector x in (4.15), ` shifted linear
systems need to be solved as M(%i, ξi) = (νiA−µiB)(βiA−αiB)−1. These
linear systems are essentially of size ` because (β`A−α`B)−1 is a block upper
triangular matrix with a leading block of size `×`. This limits the computational
cost of computing x to O(`4), which is small as long as `� n. It also follows
that the vector x can be computed even when poles in Ξ1,. . ., Ξi are equal
to eigenvalues of the pencil. Properness ensures that the leading `×` block is
nonsingular.

The last ` poles in the last i blocks Ξm−i+1, . . . ,Ξm of (A,B) can be changed
to P = {%1, . . . , %`} in a similar fashion. We compute first the row vector,

xT = γeTn

m∏
j=m−`+1

N(%j , ξj), (4.18)
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and then a unitary matrix Z = diag(I, Z`+1) such that xTZ = αeTn . The pencil
(Â, B̂) = (A,B)Z then becomes a block Hessenberg pencil with pole tuple (Ξ1,
. . ., Ξm−i, P).

We remark that if (A,B) is a real-valued pencil and the poles and shifts
considered in (4.14) and (4.18) are both closed under complex conjugation,
then the vectors x and xT and consequently the matrices Q and Z are also
real-valued. This follows from the commutativity property in combination with
the property that M(%̄, ξ̄) = M(%, ξ) for real-valued pencils. We have,

M(%, ξ)M(%̄, ξ̄) = M(%̄, ξ̄)M(%, ξ) = M(%, ξ)M(%̄, ξ̄) (4.19)

so M(%, ξ)M(%̄, ξ̄) is a real-valued matrix if A and B are real-valued.

Swapping adjacent pole blocks A second operation to change the pole tuple
of a block Hessenberg pencil is swapping two consecutive blocks in the pole
pencil. Swapping block i with block i+1 requires the computation of a unitary
equivalence essentially of size (si+si+1)×(si+si+1) that updates the pencil
(Â, B̂) = Q∗(A,B)Z in such a way that the new pole tuple and partition vector
are given by,

Ξ̂ = (Ξ1, . . . ,Ξi−1,Ξi+1,Ξi,Ξi+2, . . . ,Ξm),

ŝ = (s1, . . . , si−1, si+1, si, si+2, . . . , sm).

This problem is equivalent to reordering eigenvalues in the generalized Schur
form. Two different approaches to solve this problem have been proposed in
the literature. The first approach, studied by Kågström [57,60], requires the
solution of a coupled Sylvester equation. This method is applicable for general
blocksizes si, si+1. The second approach, studied by Van Dooren [122], is a
direct method that relies on the computation of a right eigenvector of a pole in
block i+1. This method has been studied for swapping a block of dimension
1×1 or 2×2 with a block of dimension 1×1, or vice versa. We will discuss the
problem of computing a swapping transformation in more detail in Section 4.4.

4.2.4 Multishift, multipole RQZ step

Combining the operations from the previous subsection, we propose the following
three step procedure as the generic multishift, multipole RQZ step.

I. Starting from a proper block Hessenberg pencil with pole tuple Ξ =
(Ξ1, . . . ,Ξm) and partition s = (s1, . . . , sm), select or compute ` =
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s1+ . . .+si = sci shifts P. Introduce the shifts in the block Hessenberg
pencil by computing the vector x via (4.15) and the orthonormal matrix
Q via (4.16) and updating the pencil accordingly. The pencil now has pole
tuple Ξ = (P,Ξi+1, . . . ,Ξm) and partition vector s = (`, si+1, . . . , sm).

II. Repeatedly use the swapping procedure to construct a unitary equivalence
that moves the shifts P to the last pole block. This changes the pole tuple
to Ξ = (Ξi+1, . . . ,Ξm,P) and the partition vector to s = (si+1, . . . , sm, `).

III. Compute or select ` new poles Ξm+1 and introduce them at the end of the
pencil to change the pole tuple to Ξ = (Ξi+1, . . . ,Ξm,Ξm+1).

These three steps constitute a single multishift, multipole RQZ sweep. After
every sweep, the properness of the pencil is checked and the problem is split
into independent subproblems wherever possible.

The multishift QZ method is a special case of this algorithm where the pencil
initially has pole tuple (∞, . . . ,∞) and partition (1, . . . , 1) and where this form
is always restored in step III of the algorithm. The single shift RQZ method is
also a special case of this algorithm.

In Sections 4.4 and 4.5 we address a couple of numerical challenges that
make the multishift, multipole RQZ step stable and efficient in finite precision
arithmetic. First, Section 4.3 provides further theoretical foundation for the
implicit approach.

4.3 Uniqueness and convergence

In this section we motivate the implicit approach used in the multishift, multipole
RQZ step in the form of an implicit Q theorem for block Hessenberg pencils.
We also discuss the subspace iteration that is implicitly performed during the
multishift, multipole RQZ step.

The following lemma extends the essential uniqueness of the QR factorization
from Lemma 2.3.3 to a form of essential uniqueness in the factorization of a
matrix as a product of a unitary matrix and a block upper triangular matrix.

Lemma 4.3.1. Given a nonsingular n×n matrix A and consider A = Q̂R̂s,
A = Q̌Řs two block QR factorizations where Q̂, Q̌ are unitary matrices
and R̂s, Řs are block upper triangular matrices with the same partition s =
(s1, . . . , sm). Then Q̂ = Q̌Ds with Ds a unitary block diagonal matrix with an
identical partition s as R̂s and Řs.
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Proof. From Q̂R̂s = Q̌Řs it follows that, Q̌∗Q̂ = ŘsR̂
−1
s = R̃s = Ds, with R̃s

a unitary block upper triangular matrix with partition s. The only unitary
block upper triangular matrices are block diagonal matrices Ds.

Before presenting the implicit Q theorem, we first give this direct corollary of
Theorem 4.2.8 that considers the structure of rational Krylov matrices instead
of the subspaces. This is the block generalization of Corollary 3.6.8.

Corollary 4.3.2. Given an n×n proper block Hessenberg pair (A,B) with
partition s = (s1, . . ., sm) and poles Ξ = (Ξ1, . . . ,Ξm) that are different
from the eigenvalues. Then for a tuple of shifts P different from the poles,
Krat
n (A,B, e1,Ξ,P) is a full rank n×n block upper triangular matrix with

partition (1, s1, s2, . . . , sm). While, Lrat
n−1(A,B,z1, (Ξ̆1,Ξ2, . . . ,Ξm),P) is a full

rank n×n−1 block upper triangular matrix with partition (s1, s2, . . . , sm). Here
z1 and Ξ̆1 are chosen as described in Theorem 4.2.8.

We are now ready to state the block implicit Q theorem.

Theorem 4.3.3. Let (A,B) be a regular matrix pair and let Q̂, Q̌, Ẑ, Ž be
unitary matrices with Q̂e1 = σQ̌e1, |σ| = 1, such that,

(Â, B̂) = Q̂∗(A,B)Ẑ and (Ǎ, B̌) = Q̌∗(A,B)Ž,

are both proper block Hessenberg pairs with the same partition (s1, . . . , sm) and
poles Ξ = (Ξ1, . . . ,Ξm) different from the eigenvalues. Then the pairs (Â, B̂)
and (Ǎ, B̌) are identical up to multiplication with two unitary block diagonal
matrices,

Â = D∗1ǍD2 and B̂ = D∗1B̌D2,

with D1 having partition (1, s1, . . . , sm) and D2 having partition (s1, . . . , sm, 1).

Proof. Corollary 4.3.2 states that Krat
n (Â, B̂, e1,Ξ,P) and Krat

n (Ǎ, B̌, e1,Ξ,P)
are both block upper triangular matrices of full rank with block partition
(1, s1, . . . , sm). We thus have,

Q̂Krat
n (Â, B̂, e1,Ξ,P)

= Q̂

[
e1, M̂(%1, ξ1) e1, . . . ,

(
n−1∏
i=1

M̂(%i, ξi)
)

e1

]

= Q̂

[
e1, Q̂

∗M(%1, ξ1)Q̂ e1, . . . , Q̂
∗

(
n−1∏
i=1

M(%i, ξi)
)
Q̂ e1

]
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=
[

q̂1, M(%1, ξ1) q̂1, . . . ,

(
n−1∏
i=1

M(%i, ξi)
)

q̂1

]

= σ

[
q̌1, M(%1, ξ1) q̌1, . . . ,

(
n−1∏
i=1

M(%i, ξi)
)

q̌1

]

= σQ̌Krat
n (Ǎ, B̌, e1,Ξ,P).

From Lemma 4.3.1 we have that this equality between two block QR
factorizations implies that Q̂ = Q̌D(1,s1,...,sm). For the relation between Ẑ

and Ž, consider,

( ˆ̂A, ˆ̂B) = ˆ̂Q∗ (Â, B̂) ˆ̂Z, and, ( ˇ̌A, ˇ̌B) = ˇ̌Q∗ (Ǎ, B̌) ˇ̌Z,

both reductions of the block Hessenberg pencils to a proper Hessenberg pencil
as defined in Lemma 4.2.7 and assume, without loss of generality, that ξ1

s1
is

the first pole in both ( ˆ̂A, ˆ̂B) and ( ˇ̌A, ˇ̌B). Thus ˆ̂z1 is the right eigenvector of the
pole pencil of ( ˆ̂A, ˆ̂B) associated with the eigenvalue ξ1

s1
and the same holds for

ˇ̌z1 and ( ˇ̌A, ˇ̌B). This implies,

ˆ̂Q∗ (Â− ξ1
s1
B̂)ˆ̂z1 = γ̂e1, and, ˇ̌Q∗ (Ǎ− ξ1

s1
B̌)ˇ̌z1 = γ̌e1,

by the proper Hessenberg structure of ( ˆ̂A, ˆ̂B) and ( ˇ̌A, ˇ̌B). Since by eq. (4.10),
ˆ̂Qe1 = ˇ̌Qe1 = e1, we also have,

(Â− ξ1
s1
B̂)ˆ̂z1 = γ̂e1, and, (Ǎ− ξ1

s1
B̌)ˇ̌z1 = γ̌e1,

Thus,

Q̂∗(A− ξ1
s1
B)Ẑ ˆ̂z1 = γ̂e1, and, Q̌∗(A− ξ1

s1
B)Ž ˇ̌z1 = γ̌e1.

Using, Q̂ = Q̌D(1,s1,...,sm), D(1,s1,...,sm)e1 = σe1, we get that,

Ẑ ˆ̂z1 = γ̂(A− ξ1
s1
B)−1Q̌D(1,s1,...,sm)e1 = σγ̂(A− ξ1

s1
B)−1Q̌e1

Ž ˇ̌z1 = γ̌(A− ξ1
s1
B)−1Q̌e1,

from which we conclude that Ẑ ˆ̂z1 = σ̃Ž ˇ̌z1 for some σ̃ with |σ̃| = 1. Now use
this result in combination with Corollary 4.3.2,

Ẑ Lrat
n−1(Â, B̂, ˆ̂z1,Ξ,P)
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= Ẑ

[
ˆ̂z1, N̂(%1, ξ1) ˆ̂z1, . . . ,

(
n−1∏
i=2

N̂(%i, ξi)
)

ˆ̂z1

]

=
[
Ẑ ˆ̂z1, N(%1, ξ1) Ẑ ˆ̂z1, . . . ,

(
n−1∏
i=2

N(%i, ξi)
)
Ẑ ˆ̂z1

]

= σ̃

[
Ž ˇ̌z1, N(%1, ξ1) Ž ˇ̌z1, . . . ,

(
n−1∏
i=2

N(%i, ξi)
)
Ž ˇ̌z1

]

= σ̃ Ž Lrat
n−1(Ǎ, B̌, ˇ̌z1,Ξ,P).

Based on Lemma 4.3.1 we can now guarantee that the first n−1 columns of Ẑ
are equal to the first n−1 columns of Ž multiplied with some n−1×n−1 unitary
block diagonal matrix D(s1,...,sm). Observe that this also determines ẑn = σ̆žn,
|σ̆| = 1. This concludes the proof.

In Theorem 3.7.3 it is shown that an RQZ step with shift % on a Hessenberg
pencil with pole tuple Ξ = (ξ1, . . . , ξn−1) and new pole ξn performs nested
subspace iteration accelerated by

qQk (z) = z − %
z − ξk

, and qZk (z) = z − %
z − ξk+1

, (4.20)

for the kth column vector of respectively Q and Z. Based on Lemma 4.2.7,
this can be extended to block Hessenberg pencils under the condition that
the partition s prior to the multishift, multipole RQZ step is the same as the
partition ŝ afterwards. We omit this generalization as the condition s = ŝ limits
the practical application of the theoretical result. Combining Theorem 3.7.3 with
Lemma 4.2.7, it is clear, however, that in the multishift, multipole RQZ method
shifts that have been swapped along the subdiagonal of the block Hessenberg
pencil will lead to deflations at the end of the pencil, while poles that have
been moved to the front of the pencil lead to convergence of eigenvalues at the
beginning. This holds under the assumption that a good choice of poles and
shifts is made.

4.4 Numerical considerations

In this section, we discuss numerical experiments related to the pole introduction
and swapping operations and draw conclusions for the practical implementation
of the multishift, multipole RQZ method.
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4.4.1 Introducing pole blocks

In finite precision arithmetic, the introduction of a large amount of poles in
a block Hessenberg pencil via the computation of the vectors as described in
(4.14) and (4.18) becomes increasingly inaccurate already for small to medium
blocksizes. This comes as no surprise. Kressner [67] studied the use of larger
bulges in the QR method and made a connection between the introduction of
the multishift block in the Hessenberg matrix and the pole placement problem
in systems and control theory. It has been shown in control theory that placing
many poles in a high dimensional system is intrinsically ill-conditioned [54].

To illustrate the increasing inaccuracy of the pole introduction we have performed
a numerical experiment for which the results are summarized in Figure 4.1. We
introduced pole blocks containing ` = 2, 4, 6, . . . , 30 randomly generated pairs
of complex-conjugate shifts %i in a real-valued Hessenberg matrix, a real-valued
Hessenberg pencil, and a real-valued block Hessenberg pencil with leading
blocksize `. The procedure based on (4.14) was used for this. All problems
are of size n=100. The Hessenberg matrix is obtained from the Hessenberg
reduction of a randomly generated matrix with normally distributed entries
with mean 0 and variance 1. In this case the shift vector x is computed in the
classical way according to (2.48) [135] which is compatible with (4.14). Then
an orthonormal matrix Q is computed having q1 = x. The shifts are introduced
as QT (A, I), which is a block Hessenberg pencil. The actual shifts %̂i are then
computed as the eigenvalues of the leading subdiagonal block of QT (A, I). The
blue line in Figure 4.1 shows the median absolute error |%i − %̂i| over all shifts
and 100 repetitions of the experiment. The green line in Figure 4.1 shows the
results of the same experiment but now starting from a Hessenberg pencil (A,B)
where each individual matrix is generated as before. Now a procedure based
(4.14) is used to compute x. Finally, the orange line shows the results when
(A,B) is initially a block Hessenberg pencil with leading blocksize s1 = ` and
all other blocks of size 1.

We remark that, in all three experiments, we obtain a block Hessenberg pencil
with partition (`, 1, . . . , 1) after the pole block has been introduced. The only
difference is the procedure to compute x and the form of the pencil prior the
pole introduction.

We observe from Figure 4.1 that the accuracy of the shifts rapidly decreases
for larger blocksizes in all three cases. We conclude from this experiment that
the blocksize should be limited in a practical implementation in order to avoid
losing all accuracy in the shifts already at the initialization stage. Indeed, there
is not much hope for an effective multishift, multipole RQZ sweep if the shifts
that are introduced in the block Hessenberg pencil have few to none significant
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Figure 4.1: Initialization error in function of blocksize for multishift QR
(Hessenberg matrix), RQZ (Hessenberg pencil), and multishift, multipole RQZ
(block Hessenberg pencil). Median result over 100 randomly generated problems
of size n=100.

digits in common with the intended shifts. Nonetheless, Watkins [135] showed
that in a multishift QR iteration shifts that are off at start of the sweep can
still come into focus later on.

4.4.2 Swapping pole blocks

Swapping two consecutive pole blocks of sizes n1 and n2 requires in general the
solution of a coupled Sylvester equation. The problem formulation is as follows.
We are interested in an equivalence transformation on a block triangular pencil,
which in our case is a subpencil of a block Hessenberg pencil:

QT
([
A11 A12

A22

]
,

[
B11 B12

B22

])
Z =

([
Â11 Â12

Â22

]
,

[
B̂11 B̂12

B̂22

])
, (4.21)

with blocks (A11, B11), (Â22, B̂22) of dimension n1 and blocks (A22, B22),
(Â11, B̂11) of dimension n2. Furthermore, we require:{

Λ(A11, B11) = Λ(Â22, B̂22) = Ξ1

Λ(A22, B22) = Λ(Â11, B̂11) = Ξ2 ,

and we assume that Ξ1 and Ξ2 are disjoint sets. Under these assumptions, the
following lemma, taken from [57], uniquely identifies the deflating subspaces
and formulates necessary and sufficient conditions for (4.21).
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Lemma 4.4.1 ( [57]). Let the pencil (A,B) be block upper triangular form with
block sizes n1 × n1 and n2 × n2 partitioned as in (4.21), where the spectra of
(A11, B11) and (A22, B22) are disjoint. Let X,Y ∈ Rn1×n2 be the solution of:{

A11Y −XA22 = A12,
B11Y −XB22 = B12.

(4.22)

Then a pair of right deflating subspaces (2.9) for (A22, B22) are spanned by the
columns of: [

−Y
In2

]
,

[
−X
In2

]
. (4.23)

Similarly, a pair of left deflating subspaces for (A11, B11) is given by the row
spaces of: [

In1 X
]
,
[
In1 Y

]
. (4.24)

Moreover, the orthogonal equivalence transformations Q and Z swap the spectra
of the diagonal blocks in QT (A,B)Z if and only if:[

−Y
In2

]
= Z

[
RY
0

]
, and

[
In1 X

]
=
[

0 RX
]
QT , (4.25)

where RX and RY are square and invertible.

The Sylvester equations (4.22) can be solved by a linear system of dimension
2n1n2 × 2n1n2 with Kronecker product structure. The computational cost for
the swapping transformations thus rapidly grows for increasing blocksize.

For this reason and because larger multiplicities lead to inaccurate shifts, cfr.
Figure 4.1, we propose to represent real poles as subdiagonal blocks of dimension
1 and complex-conjugate pairs as subdiagonal blocks of dimension 2 having
complex-conjugate eigenvalues. The 2×2 blocks can be easily maintained in the
standard form: ([

a11 a12
a21 a22

]
,

[
b11 b12

b22

])
, (4.26)

which has the advantage that B is always an upper Hessenberg matrix
throughout the iteration. To this end, we need to be able to swap blocks
with n1 ∈ {1, 2} and n2 ∈ {1, 2}. We review the different cases.

Swapping 1×1 with 1×1 blocks

This case was discussed in Section 3.3. Lemma 3.3.2 is proven in Appendix B
and shows that the swapping transformation can be performed such that the
norm of the off-diagonal elements in QT (A − λB)Z is smaller than relative
machine precision. The method we proposed is an extension of the work in [122].
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Swapping 2×2 with 1×1 blocks

This case is also studied in [122]. We briefly review the method. We are interested
in an equivalence transformation QT (A,B)Z = (Â, B̂) of the following form:

QT
([
A11 a12

a22

]
,

[
B11 b12

b22

])
Z =

([
â11 âT12

Â22

]
,

[
b̂11 b̂T12

B̂22

])
, (4.27)

with Λ(A11, B11) = Λ(Â22, B̂22) = Ξ1 = {ξ1
1 , ξ̄

1
1}, a33/b33 = â11/b̂11 = ξ2

1 .

Similar to the discussion in Section 3.3, the swapping is achieved by constructing
an orthonormal equivalence [q1 Q2], [z1 Z2] such that q1, z1 is a deflating pair
(2.9) for the eigenvalue ξ2

1 , since in that case QT2 Az1 = QT2 Bz1 = 0.

To construct an orthonormal Z with its first column equal to the right eigenvector
of (A,B) corresponding to ξ2

1 , we consider the matrixH = b33A−a33B. Observe
that the last row of H is equal to zero. Next we compute Ĥ = C1H with C1 a
core transformation that introduces a zero in position (2, 1) of H. The matrix
Z can then be computed by means of two core transformations as follows:

Ĥ Z2Z1︸ ︷︷ ︸
Z

=
×××
0 ××
0 0 0

��
�� =

0 ××
0 0 ×
0 0 0

,

where Z2 first eliminates element (2, 2) in Ĥ and afterwards Z1 eliminates
element (1, 1). Observe that this Z matrix also sets the first column of H to
zero, which implies that z1 indeed corresponds to the desired eigenvector.

The matrix BZ2Z1 is an upper Hessenberg matrix which can be restored to upper
triangular form by two core transformations QT1 , QT2 , i.e. B̂ = QT2 Q

T
1 BZ1Z2.

Here QT1 first eliminates element (2, 1) and afterwards QT2 eliminates element
(3, 2). This maintains the standard form (4.26). The equivalence transformation
QT = QT2 Q

T
1 , Z = Z1Z2 swaps the blocks in (4.27).

Under the condition that |b33| ≥ |a33| the following bound on the backward
error is provided in [122]. In case |b33| < |a33|, the roles of A and B can be
reversed to obtain the same bound.

Lemma 4.4.2. Let QT (A,B)Z = (Â, B̂) be related as in (4.27) with Q and Z
computed as described above and let |b33| ≥ |a33|. We have that the computed
quantities satisfy:

Q̃T (A+ EA, B + EB)Z̃ =
([
ã11 ãT12

Ã22

]
,

[
b̃11 b̃T12

B̃22

])
,
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with ‖EA‖2 ≤ εm∆, ‖EB‖2 ≤ εm∆, ∆ = max(‖A‖2, ‖B‖2).

Remark 4.4.3. Numerical evidence suggests that changing the criterion in
Lemma 4.4.2 from |b33| ≥ |a33| to |ξ1

1 | ≥ |ξ2
1 | leads to a method for which

‖EA‖2 ≤ cεm‖A‖2 and ‖EB‖2 ≤ cεm‖B‖2. A detailed error analysis supporting
this finding, like in Appendix B, is at the time of writing still under development.

Swapping 1×1 with 2×2 blocks

This case is dual to the 2×2 with 1×1 swap and can be solved with an analogous
method.

We remark that in the previous three cases it was always possible to directly
compute the deflating subspaces (4.23), (4.24) or both because at least one of
the blocks is of dimension 1, which allowed us to easily computed the related
eigenvectors. We (partially) solved (4.22) implicitly to do so.

Swapping 2×2 with 2×2 blocks

In case n1 = n2 = 2 it is no longer possible to easily compute the required
subspaces by introducing zeros like before and we solve (4.22) for X and Y .
The idea is then to construct a pair of orthonormal equivalence transformations
Q and Z that achieve the swapping from the QR factorizations (4.25).

The following lemma summarizing the error analysis from [57] holds in this
case.

Lemma 4.4.4 ( [57]). Let X̃ and Ỹ be the computed solutions of the generalized
Sylvester equation (4.22). Let

E = −A12 −A11Ỹ + X̃A22, and, F := −B12 −B11Ỹ + X̃B22,

be their residuals and let Q̃ and Z̃ be the computed factors of the QR
factorizations [

−Ỹ
I

]
= Z̃

[
R̃Y
0

]
,

[
I
X̃T

]
= Q̃

[
0
R̃TX

]
.

Then the computed equivalence transformation satisfies:([
Ã11 Ã12
∆A Ã22

]
,

[
B̃11 B̃12
∆B B̃22

])
= Q̃T

([
A11 A12
0 A22

]
,

[
B11 B12
0 B22

])
Z̃,



104 A MULTISHIFT, MULTIPOLE RATIONAL QZ METHOD WITH AGGRESSIVE EARLY DEFLATION

where,

‖∆A‖2 ≤ ‖E‖F /
√

(1 + σ2(X)2)(1 + σ2(Y )2),

‖∆B‖2 ≤ ‖F‖F /
√

(1 + σ2(X)2)(1 + σ2(Y )2).

The error bound does not imply that the off-diagonal block (∆A,∆B) can be
safely dismissed according to ‖∆A‖ ≤ εm‖A‖2, ‖∆B‖ ≤ εm‖B‖2. Nevertheless,
the bound is often pessimistic and the observed errors often allow (∆A,∆B) to
be safely dismissed.

Swap refinement

Of all the swapping procedures that we have discussed, only the 1× 1 with 1× 1
case has a backward error bound that guarantees that the off-diagonal blocks
can always be safely dismissed, albeit we have a method that satisfies this in
practice for 1× 1 with 2× 2 swaps.

The error bound for 2×2 with 2×2 swaps of Lemma 4.4.4 indicates that the
off-diagonal block cannot always be dismissed.

Whenever the result of a swapping transformation has an off-diagonal block
in A, B, or both that is too large to be directly dismissed. We propose to
iteratively refine the transformation [17] based on a linear approximation of the
involved Riccati equations. Refinement is required when the situation after the
initial transformation is as follows:([

A11 A12
∆A A22

]
,

[
B11 B12
∆B B22

])
(4.28)

with the (1, 1) blocks of dimension n2×n2, the (2, 2) blocks of dimension n1×n1,
and the (2, 1) blocks satisfying:

‖∆A‖2 > cεm‖A‖2 and/or ‖∆B‖2 > cεm‖B‖2,

with c some small refinement threshold.

In this case we need to solve the system of quadratic matrix equations:

∆A −A22Y +XA11 −XA12Y = 0,
∆B −B22Y +XB11 −XB12Y = 0,

for X,Y ∈ Rn1×n2 . These quadratic equations can be approximated by the
system of linear matrix equations:

∆A = A22Y −XA11,
∆B = B22Y −XB11,
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since ‖X‖2 and ‖Y ‖2 are typically very small as ‖∆A‖2 and ‖∆B‖2 are already
small. The solution (X,Y ) of this linear system can be computed using
Kronecker products.

Solving the linearized Riccati equation corresponds to a single step of a Newton
method, which is a widely used method to solve quadratic matrix equations,
see e.g. [72].

The result is used to construct the orthonormal equivalence transformation:

Qup =
[
In2 XT

−X In1

] [
RX 0
0 RXT

]
, Zup =

[
In2 Y T

−Y In1

] [
RY 0
0 RY T

]
where RX , RXT RY and RY T are normalization factors to make Qup and Zup
orthonormal. Which updates (4.28) to (Ǎ, B̌) = QTup(A,B)Zup.

The norm of the (2, 1) blocks is checked again and if required the same procedure
can be repeated to further reduce it.

Our numerical experiments indicated that iterative refinement is required in
about 5% of all 2× 2 with 2× 2 swaps during a typical RQZ iteration. A single
refinement iteration suffices in the majority of the cases. If the method does
not converge after 5 iterations, the swap is rejected.

4.4.3 Deflation monitoring

In order to limit both the computational cost of the pole introduction and
swapping, and the loss of accuracy, we propose a tightly-packed small-block
multishift, multipole RQZ sweep. The shifts and poles are tightly-packed similar
to Section 3.5.4.

This also simplifies the deflation criteria based on Definition 4.2.5. The ith pole
along the subdiagonal is considered deflated if,
|ai+1,i| < cεm(|ai,i|+ |ai+1,i+1|), and, |bi+1,i| < cεm(|bi,i|+ |bi+1,i+1|),

(4.29)
in the case of a single pole. If the ith pole is a double pole in standard form
(4.26), we consider it deflated if either,

|ai+1,i|+ |ai+2,i| < cεm(|ai,i|+ |ai+1,i+1|), and,

|bi+1,i| < cεm(|bi,i|+ |bi+1,i+1|),
(4.30)

or,
|ai+2,i|+ |ai+2,i+1| < cεm(|ai+1,i+1|+ |ai+2,i+2|), and,

|bi+2,i+1| < cεm(|bi+1,i+1|+ |bi+2,i+2|).
(4.31)
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Deflations in the first block column and last block row of the pencil are also
checked according to Definition 4.2.5. The first pole block of size s1 = 1 or 2
can be deflated whenever there exists an (s1 + 1)×(s1 + 1) orthogonal matrix
Q such that,

QT
([

aT1,1
A2,1

]
,

[
bT1,1
B2,1

])
=
([
A1,1
0T
]
,

[
B1,1
0T
])

(4.32)

Here, the last row is considered numerically zero according to a relative tolerance
similar to (4.29), (4.30), and (4.31). Again, we make use of the standard
form (4.26) to efficiently check if a suitable deflation transformation Q can be
computed in case s1 = 2. A similar approach is used to check for deflations in
the last block row.

4.5 Aggressive early deflation

Aggressive early deflation (AED) significantly speeds up the convergence of
the QR [15] and QZ [58] methods by identifying deflatable eigenvalues before
classical deflation criteria are able to detect them. This avoids the reuse of
converged shifts in subsequent iterations, thereby initiating convergence of other
eigenvalues sooner.

In this section, we describe how aggressive early deflation is implemented for the
RQZ method. The process consists of 3 stages and is summarized in Figure 4.2.
Because the shifts lead to convergence in the bottom-right corner of the pencil
and the poles cause convergence in the upper-left corner, AED can be performed
at both sides of the pencil. We present the description of the AED process
simultaneously for the upper-left and bottom-right sides of the pencil, but they
can be treated separately in a practical implementation. The deflation window
sizes are we for the bottom-right side and ws for the upper-left side of the pencil.
The window sizes are chosen such that they cover an integer number of blocks,
avoiding thereby subdivision of 2×2 blocks. The deflation windows are shown
in Pane I of Figure 4.2.

In the first phase, shown in pane II of Figure 4.2, the parts of the pencil within
the deflation windows are reduced to real Schur form. This can be done with the
RQZ method as all subpencils in the deflation windows are in block Hessenberg
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Figure 4.2: Visualization of the three stages of aggressive early deflation for
block Hessenberg pencils; both at the front and back of the pencil. The matrix
A is in block Hessenberg form with 2×2 blocks representing complex conjugate
pairs of shifts, the matrix B is in Hessenberg form.

form. The pencil (A,B) is subdivided as,

A =

ws 1 or 2 we


A11 A12 A13 A14 ws
A21 A22 A23 A24 1 or 2

A32 A33 A34
A43 A44 we

, B =

ws 1 we


B11 B12 B13 B14 ws
B21 B22 B23 B24 1

B32 B33 B34
B43 B44 we

,

(4.33)
and the subpencils (A11, B11) and (A44, B44) are the upper-left and bottom-right
deflation windows. Their reduction to real Schur form is given by,

(S11, T11) = QTs (A11, B11)Zs, and, (S44, T44) = QTe (A44, B44)Ze, (4.34)

which, when applied as an equivalence transformation to (A,B) gives the
following result:

Ǎ =




S11 QTs A12 QTs A13 QTs A14Ze
A21Zs A22 A23 A24Ze

A32 A33 A34Ze
QTe A43 S44

, B̌ =




T11 QTs B12 QTs B13 QTs B14Ze
B21Zs B22 B23 B24Ze

B32 B33 B34Ze
QTe B43 T44

.

(4.35)
The blocks (A21, B21)Zs and QTe (A43, B43) are the spikes shown in pane II
of Figure 4.2. Because B is an upper Hessenberg matrix by (4.26), B21 =
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bws+1,wse
T
ws is of dimension 1×ws and B43 = bn−we+1,n−wee1 is of dimension

we×1. The spikes at the side of A can be of dimension 2×ws or we×2 if there
is a 2×2 block just after the deflation window in the upper-left side of the
pencil (the example of Figure 4.2 illustrates this situation), or right before the
deflation window at the bottom-right side of the pencil. In this case, the 2 rows
of A21Zs are scalar multiples of each other. The same holds for the 2 columns
of QTe A43. We denote with pBs = bws+1,wse

T
wsZs the spike at the upper-left

deflation window of B. Similarly, pAs = ζeTwsZs, with ζ equal to the maximum
of |aws+1,ws | and |aws+2,ws |, denotes the spike at the upper-left side of A

The second phase in the AED process is illustrated in Pane III of Figure 4.2
and entails testing for deflatable eigenvalues inside the deflation windows. The
deflation test starts at the left of the spikes pAs and pBs . If there is a 1×1 real
eigenvalue located at this position, we test if:

|pAs,1| < cεm(|a1,1|+ |a2,2|), and, |pBs,1| < cεm(|b1,1|+ |b2,2|). (4.36)

If there is a 2×2 complex conjugate pair of eigenvalues at this position, we test
if:

|pAs,1|+ |pAs,2| < cεm‖A(1:2, 1:2)‖F , and, |pBs,1|+ |pBs,2| < cεm‖B(1:2, 1:2)‖F .
(4.37)

If the first eigenvalue is deflatable according to (4.36) or (4.37), the corresponding
spike elements in pAs and pBs are set to zero and the next eigenvalue is tested
according to the same criterion. If the first eigenvalue is not deflatable, another
eigenvalue that has not yet been tested, is swapped to the front of the spike. Then
it is checked if this is deflatable according to (4.36) or (4.37). This procedure
is continued until all deflatable eigenvalues inside the deflation window are
identified. The swapping of eigenvalues within the deflation window does not
change the form of (4.34) but the equivalences Q̂s and Ẑs are changed which
also changes p̂s and (Ŝ11, T̂11). The same strategy is used for AED at the
bottom-right side of the pencil. In pane III of Figure 4.2 all spike elements that
have been zeroed are marked in red.

In the third and last phase, the nonzero spike elements are handled in such a
way that the (block) Hessenberg form is restored. The restored form is shown
in pane IV of Figure 4.2, where the larger block in the middle is in block
Hessenberg form and the smaller blocks at the upper-left and bottom-right
side of the pencil are in real Schur form. The block Hessenberg restoration is
achieved by a sequence of rotations as follows. Assume that the spikes after
the deflation procedure of second phase are p̂s = ζ̂eTwsẐs and that the first i
entries in p̂s are zeroed during the deflation step. We then compute rotations
Gi+1, . . . , Gws−1 such that,

p̂sGi+1, . . . , Gws−1 = ζ̂eTwsẐsGi+1, . . . , Gws−1 = σζ̂eTws . (4.38)
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Updating Z̃s = ẐsGi+1, . . . , Gws−1 gives the final equivalence such that the
block Hessenberg form is restored as all spikes are scalar multiples. The same
idea is used for the deflation window at the bottom-right side of the pencil. We
remark that for complex-valued problems the Hessenberg form can be restored
in the third phase by a row or column permutation for respectively AED at the
upper-left or bottom-right side of the pencil.

4.6 Numerics

The numerical tests have been performed on an Intel Xeon E5-2697 v3 CPU with
14 cores and 128GB of RAM. Our implementation of the multishift, multipole
RQZ method with aggressive deflation is compiled with gfortran version 4.8.5
using compilation flag -O3. LAPACK 3.8.0 [2] and BLAS 3.8.0 are used. The
library libRQZ supports both real-valued (dRQZm) and complex-valued (zRQZm)
problems.

4.6.1 dRQZm and zRQZm

As discussed in Section 4.4, dRQZm uses 1×1 blocks for real poles and 2×2 blocks
for pairs of complex-conjugate shifts, zRQZm always uses 1×1 blocks. Both
algorithms proceed as follows:

I. Check for deflations at the upper-left side of the pencil using AED with
window size ws.

II. Check for interior deflations along the subdiagonal.

III. Compute m shifts as the eigenvalues of the trailing m×m block with
the RQZ method and introduce these as consecutive poles in the first m
subdiagonal positions of the block Hessenberg pencil. This is achieved by
using the operations of Section 4.2.3. The involved transformations are
accumulated and the pencil is updated by level-3 BLAS matrix-matrix
multiplication, cfr. Section 2.3.4.

IV. Chase the batch of m shifts to the last m positions on the subdiagonal
of the block Hessenberg pencil. The chasing is performed by repeatedly
swapping the m shifts with the next k poles. Every time one sequence of
swaps is computed, all transformations are accumulated and the pencil is
updated by level-3 BLAS matrix-matrix multiplication, cfr. Section 2.3.4.
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V. Check for deflations at the bottom-right side of the pencil using AED with
window size we.

VI. Compute m poles as the eigenvalues of the leading m×m block with
the RQZ method and introduce these as consecutive poles in the last m
subdiagonal positions of the block Hessenberg pencil. This is achieved by
using the operations of Section 4.2.3. The involved transformations are
accumulated and the pencil is updated by level-3 BLAS matrix-matrix
multiplication, cfr. Section 2.3.4.

This algorithm actively chases shifts from the upper-left corner to the bottom-
right corner. This typically leads to fast convergence of eigenvalues near the
bottom-right side of the pencil. The swapping also slowly moves the poles that
are introduced at the bottom-right corner to the upper-left side of the pencil
which, in turn, induces convergence of eigenvalues near the upper-left corner of
the pencil.

The heuristics used for block sizes in libRQZ are summarized in Table 4.1. The
first column lists the size of the pencil. The second column lists the batch
size m of shifts that are handled in one iteration. The third column lists the
swap size k: after the m shifts have been swapped with the next k poles, the
transformations are accumulated and the entire pencil is updated with a BLAS
xGEMM call. In our experience, choosing k equal to m gives the best performance.
The fourth column lists the window size we for aggressive early deflation at the
bottom-right side of the pencil. Finally, the fifth column lists the window size
ws for aggressive early deflation at the upper-left side of the pencil.

Table 4.1: libRQZ settings: n problem size, m step multiplicity, k swap range,
we AED window size at the bottom-right side of the pencil, ws AED window
size at the upper-left side of the pencil.

n m k we ws
[1; 80[ 1—2 1—2 1—2 1—2
[80; 150[ 4 4 6 4
[150; 250[ 8 8 10 4
[250; 501[ 16 16 18 6
[501; 1001[ 32 32 34 10
[1001; 3000[ 64 64 66 16
[3000; 6000[ 128 128 130 32
[6000;∞[ 256 256 266 48

We compare zRQZm and dRQZm with respectively ZHGEQZ and DHGEQZ from
LAPACK [2] in terms of speed and accuracy.
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4.6.2 Random problems

For our first numerical experiment, we have generated random matrix pairs of
increasing dimension. The entries of the matrices are drawn from the standard
normal distribution. The experiment is performed both for real-valued and
complex-valued matrix pairs; for the latter class of problems, both the real and
imaginary part are randomly generated.

The matrix pairs are initially reduced to Hessenberg, triangular form by means
of the LAPACK [2] routines xGEQRFP and xGGHRD. After this initial reduction,
the matrix pairs are further reduced to (real) generalized Schur form, (S, T ) =
Q∗(A,B)Z, with libRQZ and LAPACK [2]. In all cases, the entire Schur
decomposition is computed.
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Figure 4.3: CPU time of DHGEQZ of LAPACK and dRQZm of libRQZ on randomly
generated real-valued matrix pencils (left). Speedup of libRQZ over LAPACK
(right).

The left part of Figure 4.3 shows the CPU time of dRQZm and DHGEQZ for
problems of size 1000 up to 8000 on a loglog scale. The dashed lines indicate the
slopes of the time complexity in function of problem size, which are estimated
in a least-squares sense. The least-square fits are computed based on the (ni, ti)
data indicated with the circular markers that show the exact height of the bars
in the graph. For DHGEQZ we observe an empirical time complexity close to
O(n3), while the empirical time complexity of dRQZm is significantly lower than
O(n3) with a leading exponent close to 2.2. This improved time complexity can
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be attributed to the effectiveness of aggressive early deflation in combination
with the rational iteration leading to occasional deflations situated more in the
interior part of the pencil.

The right part of Figure 4.3 shows the speedup achieved by dRQZm over DHGEQZ.
The crossover point where dRQZm becomes faster than DHGEQZ is situated between
n = 1000 and n = 1414. Our method, dRQZm, is slower than DHGEQZ for problems
of smaller size because the computational overhead of computing swaps of 2×2
with 2×2 blocks and 2×2 with 1×1 blocks leads to larger lower-order terms in
the time complexity.
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Figure 4.4: Relative backward error on Schur decomposition computed with
LAPACK (circles) and libRQZ (triangles) on A (full lines) and B (dashed lines).
Both for real-valued (left) and complex-valued (right) randomly generated
matrix pairs.

The left part of Figure 4.4 shows the relative backward errors,

‖S −QTAZ‖F /‖A‖F , and, ‖T −QTBZ‖F /‖B‖F ,

on the generalized real Schur decompositions obtained with dRQZm and DHGEQZ.
We observe that the relative backward errors of dRQZm are about half of these
of DHGEQZ.

Figure 4.5 shows the results of an experiment similar to Figure 4.3 but for
complex-valued pencils. Again, ZHGEQZ shows an empirical time complexity
larger than O(n3), while zRQZm stays below O(n3). The crossover point where
ZHGEQZ is faster than zRQZm is not shown in Figure 4.5, but is situated around
n = 200. This is significantly lower than for dRQZm and is explained by the
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Figure 4.5: CPU time of ZHGEQZ of LAPACK and zRQZm of libRQZ on randomly
generated complex-valued matrix pencils (left). Speedup of libRQZ over
LAPACK (right).

fact that only 1×1 with 1×1 swaps are used in this case. These have a lower
computational overhead than larger swaps. The right part of Figure 4.4 shows
the relative backward errors on the generalized Schur decompositions for the
complex-valued pencils. Again, the relative backward error of zRQZm is about
half of ZHGEQZ.

4.6.3 Problems from applications

In this section we test libRQZ on seven pencils originating from applications.
We study the cavity and obstacle flow pencils generated with IFISS [34, 35].
The same pencils were studied in the previous chapter. Besides these pencils,
we have selected four pencils from Matrix market [13] originating from the
BFWAVE, BCSSTRUC4, and MHD collection and the rail pencil from the
Oberwolfach benchmark collection [65].

The results of the numerical tests are summarized in Table 4.2. The table lists
the CPU time and maximum of the relative backward errors on A and B for the
generalized real Schur form computed with LAPACK [2] and libRQZ. Again,
libRQZ requires less CPU time and has the smaller backward error.
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Table 4.2: CPU times and maximum relative backward error on the generalized
real Schur form computed with LAPACK and libRQZ for pencils originating
from applications.

DHGEQZ dRQZm
Problem n tCPU(s) max error (A,B) tCPU(s) max error (A,B)
BFW782 782 4.5 2.8 · 10−14 3.7 5.0 · 10−15

BCSST26 1922 33.0 4.1 · 10−14 12.8 3.9 · 10−15

Cavity Flow 2467 50.1 1.2 · 10−14 20.4 4.7 · 10−15

Obstacle Flow 2488 64.0 9.9 · 10−15 27.9 5.9 · 10−15

MHD3200 3200 60.8 9.0 · 10−15 39.6 3.1 · 10−15

MHD4800 4800 194.1 1.4 · 10−14 92.2 3.4 · 10−15

RAIL 5177 1287.5 1.7 · 10−13 87.5 1.1 · 10−14

4.7 Conclusion and future work

In this chapter we have generalized the rational QZ method from Hessenberg
to block Hessenberg pencils. This allows for the use of complex conjugate
shifts and poles in real arithmetic. Numerical considerations have shown that
medium to large multiplicities are unfavorable due to inherent inaccuracies and
an increasing computational complexity. In the spirit of recent developments for
the QR [14,15] and QZ [58] methods, this urged us to use small shift and pole
multiplicities, but they can be tightly-packed together. This approach maintains
accurate shifts and poles in combination with level 3 BLAS performance. We
also implemented the aggressive early deflation strategy for block Hessenberg
pencils. Numerical experiments indicated that this combination leads to an
efficient algorithm for the generalized eigenvalue problem that can outperform
LAPACK [2] in terms of speed, accuracy, and time complexity. However,
the implementation of the QZ method in LAPACK 3.8.0 does not include
aggressive early deflation and blocking. A further comparison with [58] would
be interesting. In Chapter 5, we provide further numerical evidence that pole
swapping algorithms can outperform bulge chasing algorithms.

In a future update of libRQZ, we plan to implement bidirectional RQZ sweeps
that actively chase poles from the bottom-right to the upper-left corner of
the pencil in parallel to chasing shifts from the upper-left to the bottom-right
corner. Bidirectional chasing can, for a large part, be performed independently
in both directions. It is hence an excellent opportunity for shared-memory
parallelization. On the theoretical side, a further investigation of shift and pole
selection strategies that stimulate interior deflations would be an interesting
undertaking.



Chapter 5

Rational QZ for Hessenberg,
unitary Hessenberg pencils

This chapter proposes a computationally efficient formulation of the
rational QZ method for the case of proper Hessenberg pencils where one
of both matrices is unitary. The content is based on:

Camps D., Mach T., Vandebril R., and Watkins D. S., Pole
swapping methods for Hessenberg, unitary Hessenberg pencils: Rational

QR algorithms. In preparation.

5.1 Introduction

The rational QZ method computes the generalized Schur decomposition (2.12) of
a dense, unsymmetric Hessenberg pair (A,B) using a pole swapping algorithm.
The pole swapping generalization has several advantages over the bulge
chasing strategy. The most notable advantage is an improved convergence
behaviour determined by subspace iteration accelerated by rational functions,
cfr. Theorem 3.7.3.

It would be advantageous to have a similar method for the standard eigenvalue
problem (2.1) defined by a dense, unsymmetric Hessenberg matrix A. In
principle the rational QZ method of Chapter 3 can be directly used for a
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proper Hessenberg pair (A, I) but this has two major disadvantages over using
Francis’ bulge chasing algorithm. Firstly, it requires double the storage space
as it works on two n×n matrices instead of one. Secondly, the computational
cost of an implicit RQZ step on the Hessenberg pair (A, I) is also double the
cost of an implicit QR step on the Hessenberg matrix A as the former works
with equivalence transformations on two matrices while the latter carries out
similarity transformations on a single matrix. The reduction in the number
of iterations and swaps as a result of using a rational instead of a polynomial
iteration is insufficient to compensate for this.

In the current chapter we present an efficient formulation of the rational QZ
algorithm for matrix pairs where one of both matrices is unitary. We denote
Hessenberg, unitary Hessenberg pairs as (A,U). It is clear that the unitarity of
U is preserved under unitary equivalence transformations. Furthermore it is
self-evident that an upper Hessenberg matrix A can also be represented as a
Hessenberg matrix pair (A,U).

The rational QZ method that we propose in this chapter uses an efficient storage
scheme for the unitary matrix U as a sequence of core transformations. This
approach effectively overcomes both drawbacks: both the storage requirements
and the computational cost approximately halve. We pay special attention to
stability of the numerical scheme.

We mainly consider general Hessenberg, unitary Hessenberg pencils (A,U) but
if the algorithm is used for the solution of a standard eigenvalue problem, (A, I),
we can always compute a generalized Schur decomposition (2.12) such that
Q∗(A, I)Z = (T, I). It follows from Q∗Z = I that this is a Schur decomposition
(2.5) of A. If the Schur vectors are required, it suffices to only accumulate Q.
This has the same computational complexity as for Francis’ polynomial QR
method. We call the algorithm the rational QR method if it is used for the
standard eigenvalue problem.

This chapter is organized as follows. Section 5.2 introduces the representation
and discusses the details required to perform a rational QZ step on the format
such as deflation monitoring, pole introduction, and pole swapping. Section 5.3
discusses that a rational QZ method based on the proposed format indeed
requires approximately half the storage space and computational cost of the
dense rational QZ method. Section 5.4 present numerical results obtained with
ZLAHPS, our fortran implementation of the rational QR algorithm, and compare
them to the ZLAHQR routine from LAPACK [2]. We demonstrate that the pole
swapping algorithm can lead to a reduction of more than 25% in CPU time
and leads to a more accurate Schur decomposition. Section 5.5 concludes this
chapter.
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5.2 Hessenberg, unitary Hessenberg pencils

Starting from a proper n×n Hessenberg, unitary Hessenberg pair (A,U), we
store the unitary Hessenberg matrix U as a sequence or pattern of n−1 unitary
core transformations (2.42). Within the class of unitary core transformations,
we make a further restriction to core transformations which have a rotation
matrix (2.43) as active part. Furthermore, in ZLAHPS we represent the complex
rotation by a complex cosine and a real sine without loss of generality. This
leads to a reduction in computational cost as the multiplication of a real and
complex variable requires less than half the number of operations compared to
multiplying two complex variables.

It is always possible to factorize a unitary upper Hessenberg U as a sequence
of core transformations. To this end, compute n− 1 core transformations that
create zeros in the subdiagonal elements of the upper Hessenberg matrix U [46]:

C∗n−1 . . . C
∗
1U = R = Dα = diag(1, . . . , 1, α).

The result is an upper triangular matrix R but since the left-hand side above
is unitary, R is also unitary and hence must be diagonal. Furthermore, the
cosine of the rotation Ci can always be chosen such that dii = 1. The result
is a diagonal matrix Dα = diag(1, . . . , 1, α) and the original pencil is thus
(A,C1 . . . Cn−1Dα). The equivalent pencil (AD∗α, C1 . . . Cn−1) only differs in its
last column from (A,U), it is in the desired factorized form and has the exact
same poles as (A,U). Without loss of generality, we can thus represent any
proper Hessenberg, unitary Hessenberg pencil in the format illustrated for a
problem of dimension 5:

A

×××××
××××
×××
××
×

×
×
×
×

,

U = C1C2C3C4

��
��
��
��

.

This requires O(n2) storage space for A but only O(n) for U if every core
transformation is stored by its sine and cosine. For large n, the storage
requirements for (A,C1 . . . Cn−1) is thus approximately half of the dense
representation.

For the standard eigenvalue problem all core transformations can be initialized
as identity transformations.
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The poles of a proper Hessenberg pencil (A,U1 . . . , Un−1) are, by (2.43), equal
to:

ξi = ai+1,i

si
∈ C̄ for i = 1, . . . n− 1. (5.1)

Properness of the Hessenberg pencil translates in a straightforward manner
to the factorized format and also deflations can also be easily monitored. To
detect a deflatable eigenvalue at the top-left position of the pencil, it suffices to
compute C∗1A(1:2, 1:2) and check if the (2, 1)-element is negligible up to relative
machine precision. A similar strategy is used for the bottom-right pole by
considering A(n−1:n, n−1:n)C∗n−1. Poles along the subdiagonal can be safely
deflated if:

|ai+1,i| < εm(|ai,i|+ |ai+1,i+1|), and, |si| < εm.

5.2.1 Manipulating poles

In this section we review the two pole manipulation operations for proper
Hessenberg pencils, introduced in Section 3.3, for a proper Hessenberg pair in
the form (A,U = C1 . . . Cn−1) with pole tuple Ξ = (ξ1, . . . , ξn−1), ξi given by
(5.1).

Changing the first and last pole. If we want to change ξ1 to another value %,
we consider the vector:

x = γ(A− %U)(A− ξ1U)−1e1 = γ̂(A− %U)e1 = γ̂(A− %C1)e1, (5.2)

with γ, γ̂ some scalars. The second equality follows from the observation that
(A− ξ1U)e1 = βe1. The third equality follows from Cie1 = e1 if i > 1. Notice
that only the elements in the first two rows of x contain nonzero elements. The
next step is to compute a core transformation that introduces a zero in the
second row of x, Q∗1x = αe1. The pencil (Â, Û) = Q∗1(A,U) is equivalent to
(A,U) but with its first pole replaced by %. We remark that Û = Q∗1U can
be computed by the fusion Ĉ1 = Q∗1C1 of two core transformations in O(1)
operations. More details on the fusion operation are provided in Appendix A.1.

The last pole ξn−1 of (A,U) can be changed to another value % using a similar
strategy. Consider the row vector:

yT = γeTn (A− ξn−1U)−1(A− %U) = γ̂eTn (A− %U) = γ̂eTn (A− %Cn−1).

The second equality follows from eTn (A− ξn−1U) = βeTn , and the third equality
from eTnCi = eTn if i < n− 1. We get that yT is a row vector with only nonzero
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elements in the last two columns and can thus compute a core transformation
Zn−1 such that yTZn−1 = αeTn . The last pole is then replaced by % in the
equivalent pencil (A,U)Zn−1. The unitary matrix can again be updated by a
fusion operation Ĉn−1 = Cn−1Zn−1 in O(1) operations.

Swapping poles. To swap two consecutive poles ξi and ξi+1 in (A,U), we
devise a numerically stable algorithm based on Lemma 3.3.2 and Table 3.1. We
consider the 2×2 upper triangular subpencil positioned at rows i+ 1 and i+ 2
and columns i and i+ 1 of (A,U) which is if the form:

(Ă, Ŭ) =
([
α1 a

α2

]
,

[
s1 c̄1c2

s2

])
, with

{
|c1|2 + s2

1 = 1
|c2|2 + s2

2 = 1 . (5.3)

The scalars c1 and s1 determine Ci, while c2 and s2 determine Ci+1.

The eigenvalues of the pencil (Ă, Ŭ) need to be reordered to swap the poles in
(A,U). For this we make use of the methods discussed in Section 3.3.2. The
only additional requirement is that the representation of U as a product of core
transformations is accurately preserved under the swapping operation. We use
the turnover operation for a V-shaped pattern of core transformations for this.
A turnover operation changes to V-shaped pattern of cores, EiFi+1Gi, acting
on consecutive rows i and i+ 1, to a hat-shaped pattern or vice versa:

EiFi+1Gi = Êi+1F̂iĜi+1.

The turnover operation requires O(1) operations and is backward stable [4]
in the sense that the in finite precision arithmetic it computes EiFi+1Gi =
Êi+1F̂iĜi+1 + ∆ with ‖∆‖2 ≤ εm. More details on the turnover operation are
provided in Appendix A.1.

Case I If |ξi| ≥ |ξi+1|, then, according to Table 3.1, we can use either method
1.A or 2.A to compute a backward stable swap. Since we want to use the
turnover operation to compute the second transformation, we must choose
method 1.A in this case.

The procedure goes as follows. We first compute a rotation Zi to introduce a
zero in position (1, 1) of H1 according to (3.4),

e∗1H1Zi = e∗1(s2Ă− α2Ŭ)Zi = [0 ×] .

Next, this rotation is introduced in the pattern of cores of theU matrix. It
commutes with all core transformations Cj , |i− j| > 1 such that the relevant
part of the pattern is CiCi+1Zi. This can undergo a (backward stable) turnover
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to Qi+1ĈĈiCi+1. The core Qi+1 can be removed up to machine precision by a
fusion from the left with Q∗i+1.

From the discussion in Section 3.3.2 we conclude that |e∗2Q∗i+1ĂZie1| ≤ cεm‖Ă‖2.
A similar bound holds for Ŭ based on the backward stability of the turnover.
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Figure 5.1: First backward stable strategy to perform a pole swap if |ξi| ≥ |ξi+1|.

The first method is illustrated pictorially in Figure 5.1 for a 5× 5 pencil where
the second and third pole undergo a swapping transformation. The relevant
part of A and the core transformations which are used to form H1 and compute
Z2 are indicated in pane I. In pane II, Z2 is applied to A and introduced in U .
This shows the V-shaped pattern of C2C3Z2, the turnover operation is indicated
with the gray arrow and core transformation Q3 that appears on the other side
of the pattern. This core transformation is removed in pane III where also the
rows of A are updated to maintain the equivalence. This completes the swap.

Case II If |ξi| < |ξi+1|, then we can use method 2.B from Table 3.1 in
combination with the turnover operation. We compute Qi+1 according to
(3.5) such that introduces a zero in position (2, 2) of H2,

Q∗i+1H2e2 = Q∗i+1(s1Ă− α1Ŭ)e2 = [× 0]T .

This rotation is introduced in the pattern of U , where the relevant part now is
the hat-shaped pattern Q∗i+1CiCi+1 and Zi is retrieved from the turnover of
this pattern. This process is summarized pictorially in Figure 5.2.

5.3 Computational cost

The rational QZ step for Hessenberg, unitary Hessenberg pencils (A,C1 . . . Cn−1)
proceeds entirely similar to the dense rational QZ step of Chapter 3 but with
the adapted pole manipulation techniques from Section 5.2.1.
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Figure 5.2: Second backward stable strategy to perform a pole swap if |ξi| <
|ξi+1|.

As all pole manipulation techniques only use fusion and turnover operations,
with an individual computational cost of O(1), to update U , the computational
cost of a single rational QZ step,

(Â, Û = Ĉ1 . . . Ĉn−1) = Q∗(A,U = C1 . . . Cn−1)Z,

is O(n) for Û and O(n2) for Â. This is approximately half the cost of a dense
rational QZ step for large n.

5.4 Numerical experiment

This section presents the results obtained with ZLAHPS in comparison with
ZLAHQR from LAPACK [2]. All tests were performed on an Intel Xeon E5-2697
v3 CPU with 14 cores and 128GB of RAM using LAPACK 3.8.0 and BLAS
3.8.0 [2]. The code was compiled with gfortran version 4.8.5 using compilation
flag -O3.

ZLAHQR is the lowest level routine in the collection of QR algorithms from
LAPACK. It implements a single-shift bulge-chase method for complex
Hessenberg matrices with a Wilkinson shifting strategy. This routine is called
by the higher level methods, which implement cache blocking and aggressive
early deflation (cfr. Chapter 4). It is used to compute the shifts, perform
aggressive early deflation, or solve the problem if the dimension is smaller than
the heuristic 150 [2].

ZLAHPS is an adaptation of ZLAHQR which uses a pole swapping algorithm for
Hessenberg, unitary Hessenberg pencils as described in this chapter. It uses a
Wilkinson shift strategy and a Wilkinson pole strategy. The turnover, fusion
and rotation generator routines used in ZLAHPS are adapted from EISCOR [4].
All rotations for the U matrix are represented with 3 real variables: the real
and imaginary part of the cosine, and a real sine.



122 RATIONAL QZ FOR HESSENBERG, UNITARY HESSENBERG PENCILS

We ran both routines an a set of randomly generated matrices of dimension 5 up
to 1000 that are first reduced to Hessenberg form via similarity transformations.
The CPU time and the relative backward error, ‖Q∗HQ − T‖2/‖H‖2, are
summarized in respectively Table 5.1 and Table 5.2.

Table 5.1: Comparison between ZLAHQR from LAPACK and ZLAHPS in terms of
CPU time for random matrices reduced to Hessenberg form. The first column
states the problem size, the second column the number of runs over which the
results have been averaged, the third column shows the CPU time of ZLAHQR,
the fourth column shows the same data for ZLAHPS, and the fifth column shows
the runtime of ZLAHPS relative to ZLAHQR.

n # runs ZLAHQR ZLAHPS %
tCPU (s) tCPU (s) tCPU

5 1000 1.4 · 10−5 1.4 · 10−5 100%
10 1000 6.0 · 10−5 5.6 · 10−5 93%
20 500 2.8 · 10−4 2.4 · 10−4 86%
40 250 1.6 · 10−3 1.3 · 10−3 81%
80 125 1.0 · 10−2 7.4 · 10−3 74%
150 80 6.3 · 10−2 4.5 · 10−2 71%
300 80 5.0 · 10−1 3.2 · 10−1 64%
600 40 3.6 · 100 2.3 · 100 64%
1000 40 1.6 · 101 1.0 · 101 63%

The fifth column of Table 5.1 shows the CPU time of ZLAHPS relative to ZLAHQR.
We observe reductions up to 29% for problems of dimension not greater than
150 – the typical use case – and, except for the smallest problem size of 5,
ZLAHPS is always faster than ZLAHQR. The speedup increases to up to 37% for
problems of dimension 1000.

Table 5.2 shows the same comparison in terms of the accuracy of the Schur
decomposition. We observe that ZLAHPS is always more accurate than ZLAHQR
which can at least partially be attributed to the reduction in number of
operations by using the rational iteration instead of the polynomial one.

5.5 Conclusion

This chapter proposed a specification of the rational QZ method for Hessenberg,
unitary Hessenberg matrix pairs which requires approximately half the storage
space and computational cost in comparison with the dense rational QZ method
of Chapter 3. The method uses a representation of the unitary matrix in terms
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Table 5.2: Same comparison between ZLAHQR from LAPACK and ZLAHPS as in
Table 5.1 but in terms of relative backward error on the Schur decomposition.

n # runs ZLAHQR ZLAHPS
BWE BWE

5 1000 1.8 · 10−15 1.2 · 10−15

10 1000 1.8 · 10−15 1.4 · 10−15

20 500 2.8 · 10−15 1.8 · 10−15

40 250 3.7 · 10−15 2.6 · 10−15

80 125 5.7 · 10−15 3.7 · 10−15

150 80 7.8 · 10−15 4.9 · 10−15

300 80 1.1 · 10−14 6.9 · 10−15

600 40 1.5 · 10−14 9.5 · 10−15

1000 40 2.0 · 10−14 1.2 · 10−14

of core transformations. We have seen how the pole manipulation techniques can
be adapted to this format such that the representation is accurately preserved
throughout the algorithm and the resulting method is backward stable.

The main objective of this format is to enable the use of a pole swapping
algorithm for the standard, unsymmetric eigenvalue problem whilst the storage
requirements and computational cost remains on par with the QR algorithm.
This method is considered as a rational QR algorithm.

Numerical experiments compared our rational QR algorithm, ZLAHPS, with
ZLAHQR from LAPACK and showed a significant reduction in compute time in
combination with a more accurate result in favor of our method.

Further research is required to devise a way to include multishift, multipole
rational QZ steps and aggressive early deflation techniques within this proposed
format. Our experiments confirm that this has the potential to be competitive
with state-of-the-art eigenvalue solvers for the dense, standard eigenvalue
problem if blocking for cache efficiency is used.





Chapter 6

Two-sided pole swapping for
tridiagonal pencils

This chapter studies the pole swapping method for tridiagonal matrix
pencils. The content is based on:

Camps D., Vandebril R., and Van Dooren P., Two-sided rational
iterations for tridiagonal pencils. In preparation.

6.1 Introduction

In this chapter we study pole swapping methods for regular, block tridiagonal
matrix pencils that preserve the block tridiagonal structure of the matrix pencil
throughout the iteration. Non-unitary equivalence transformations in lower and
upper triangular form are well-suited for this task as they allow us to locally alter
the poles of the pencil without perturbing the tridiagonal structure. We propose
to use (nearly) optimally scaled lower and upper triangular transformations.
Backward stability of the algorithm is unfortunately not assured unlike in the
unitary case.

The proposed algorithm has two major potential advantages over the unitary
algorithms of previous chapters. Firstly, thanks to the sparsity of the pencil
the computational complexity of the algorithm is only O(n2) if the equivalence
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transformations are not accumulated. Secondly, as we will see, tridiagonal
pencils have poles on both the subdiagonal and the superdiagonal and these
poles can be independently used for a pole swapping step. This gives additional
degrees of freedom for novel shifting strategies.

We pay special attention to symmetric pencils that can be diagonalized by
congruence transformations. A sufficient but not a necessary condition for
diagonalizability of a symmetric pencil is definiteness [89]. Furthermore, any
dense, symmetric pencil can be reduced in O(n3) operations to symmetric
tridiagonal form [42,108] which admits the use of our algorithms.

The symmetric generalized eigenvalue problem with definite B is often solved
using a hybrid method which combines the Cholesky factorization B = LLT with
the symmetric QR method for the standard eigenvalue problem defined by the
matrix L−1AL−T . This approach was first formulated byWilkinson [141, Section
71]. It is advised to use a Cholesky factorization with pivoting to improve
stability of the algorithm [26]. This method has some disadvantages. Firstly,
if B is ill-conditioned, then the computed eigenvalues may be inaccurate [46].
Secondly, the matrix L−1AL−T becomes, in general, a full matrix. Nonetheless,
L−1AL−T has a quasi-separable structure in case A− λB is tridiagonal which
can be exploited to devise an improved O(n2) eigenvalue solver [124].

Where the rational QZ and QR method of the previous chapters can be viewed
as methods that are derived from the QR algorithm [39,40], the non-unitary
methods discussed in the current chapter perhaps compare more to the LR
algorithm [101]. For this reason, we refer to the method as a rational LR
algorithm for tridiagonal matrix pairs.

6.2 Tridiagonal pencils

Definition 6.2.1. An n×n matrix pair (A,B) is said to be a tridiagonal matrix
pair with respectively lower and upper pole tuples,

Ξ(A,B) = (ξ1, . . . , ξn−1), and, Ψ(A,B) = (ψ1, . . . , ψn−1), (6.1)

if both A and B are tridiagonal matrices and if:

ξi = ai+1,i

bi+1,i
∈ C̄, and ψi = ai,i+1

bi,i+1
∈ C̄ for all i ∈ {1, . . . , n−1}.

The definition of the lower pole tuple Ξ(A,B) is compatible with Definition 3.2.1.
Furthermore, it is obvious that Ψ(A,B) = Ξ(AT , BT ). We illustrate the previous
definition with a small-scale example.
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Example 6.2.2. The 3×3 real, unsymmetric, tridiagonal matrix pair,

A =

1 2
3 2 9

4 3

 , B =

2 2
6 1 3

1 3

 , (6.2)

has lower pole tuple Ξ(A,B) = (0.5, 4), upper pole tuple Ψ(A,B) = (1, 3), and
eigenvalues Λ(A,B) = {0.5, 1.33± ı0.94}

The previous example illustrates that real, tridiagonal matrix pairs can have
complex-conjugate eigenvalues. To develop an eigenvalue algorithm using
real arithmetic for real-valued matrix pairs, we allow for a relaxation of
Definition 6.2.1 similar to the relaxation of block Hessenberg pencils in
Definition 4.2.3. For the same numerical reasons as discussed in Section 4.4, we
restrict ourselves to 2×2 blocks for complex-conjugate poles and 1×1 blocks for
real poles.

Definition 6.2.3. A matrix pair (A,B) ∈ Rn×n is called a block tridiagonal
matrix pair if it can be simultaneously partitioned as:

n− 1 1[ ]
aT11 − λbT11 a12 − λb12 1
A21 − λB21 a22 − λb22 n−1

, and

1 n− 1[ ]
â11 − λb̂11 Â12 − λB̂12 n−1
â21 − λb̂21 âT22 − λb̂T22 1

, (6.3)

and if the n−1×n−1 pencils A21−λB21 and ÂT12−λB̂T12 are in real, generalized
Schur form (2.13). The lower pole tuple is defined as Ξ(A,B) = Λ(A21, B21)
and the upper pole tuple as Ψ(A,B) = Λ(Â21, B̂21).

Observe that Definition 6.2.3 implies that a block tridiagonal pencil is a
pentadiagonal pencil. The last ingredient required for (block) tridiagonal pencils
is a definition of properness.

Definition 6.2.4. A (block) tridiagonal matrix pair (A,B) is called proper or
irreducible if both (A,B) and (AT , BT ) are proper (block) Hessenberg pairs
according to Definition 4.2.5.

The example tridiagonal pair in (6.2) is not proper as the first column of A is a
scalar multiple of the first column of B. This implies that ξ1 is an eigenvalue of
(A,B) with right eigenvector e1.

In case of a symmetric, (block) tridiagonal matrix pair, (A,B) = (AT , BT ), we
have that Ξ(A,B) = Ψ(A,B).

The following lemma shows that if a block tridiagonal pair undergoes an
equivalence transformations with upper triangular matrices the result is a block
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upper Hessenberg pair. Lower triangular equivalences lead to block lower
Hessenberg matrix pairs. A pair (A,B) is said to be a lower block Hessenberg
pair if (AT , BT ) is an upper block Hessenberg pair.

Lemma 6.2.5. Let (A,B) be an n×n proper block tridiagonal matrix pair
with lower pole tuple Ξ(A,B) and upper pole tuple Ψ(A,B). If R, Ř are a
pair of n×n nonsingular upper triangular matrices, then R(A,B)Ř is a proper,
upper block Hessenberg pair with pole tuple Ξ(A,B). If L, Ľ are a pair of n×n
nonsingular lower triangular matrices, then L(A,B)Ľ is a proper, lower block
Hessenberg pair with pole tuple Ψ(A,B).

Proof. We can rewrite R(A,B)Ř using the first partitioning of (6.3) and a block
partitioning of the upper triangulars R and Ř as follows:

1 n− 1[ ]
r11 rT12 1
0 R22 n− 1




n− 1 1[ ]
aT11 − λbT11 a12 − λb12 1
A21 − λB21 a22 − λb22 n−1

,




n− 1 1[ ]
Ř11 ř12 n− 1
0 r22 1

 .

The (n− 1)× (n− 1) pole pencil in position (2, 1) of R(A,B)Ř above is thus
given by R22(A21 − λB21)Ř11. This is an equivalence transformation of a block
upper triangular pencil in generalized Schur form (2.13) with nonsingular, upper
triangular matrices. This preserves the block upper triangular structure and
the ordering of the eigenvalues of the pole pencil. The second partitioning of
(6.3) cannot be preserved by an upper triangular equivalence. This proves the
first result. The proof of the second result proceeds similarly by considering a
block partitioning of L, Ľ which preserves the second partitioning of (6.3) but
not the first.

6.3 Swapping poles on the subdiagonal

In this section we discuss how two consecutive poles on the subdiagonal of a block
tridiagonal pencil A−λB can be swapped without altering the block tridiagonal
structure in the pencil and without changing the upper poles Ψ(A,B). We
limit ourselves to the subdiagonal poles without loss of generality as reordering
superdiagonal poles of A− λB is equivalent to reordering subdiagonal poles of
AT − λBT .

To this end we consider the pencil A − λB which is block upper triangular
and has two sub-pencils Aii − λBii of dimensions ni × ni, i = 1, 2 with disjoint
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spectra :

A− λB :=
[
A11 − λB11 A12 − λB12

0 A22 − λB22

]
, Λ(A11, B11) ∩ Λ(A22, B22) = ∅.

(6.4)

As we have seen previously in Section 4.4, there always exist invertible
equivalence transformations that permute the spectra of the two diagonal
blocks:

S(A−λB)T = Â−λB̂ :=
[
Â11 − λB̂11 Â12 − λB̂12

0 Â22 − λB̂22

]
, detS 6= 0, detT 6= 0,

(6.5)
where the spectra (and sizes) of λB11 − A11 and λB̂22 − Â22 are equal, and
those of λB22 −A22 and λB̂11 − Â11 are equal.

The left and right deflating subspaces of A−λB are well defined by Lemma 4.4.1
[57]. The following lemma provides the required conditions which an invertible
equivalence transformation (S, T ), must satisfy to get (6.5).

Lemma 6.3.1. Let the pencil A − λB be given as in (6.4). The invertible
equivalence transformations S and T swap the spectra of the diagonal blocks in
S(A− λB)T if and only if the first block column of T and the last block row of
S are spanning the right and left deflating subspaces described in Lemma 4.4.1,
i.e. :[

−Y
In2

]
= T

[
In2

0

]
MT , and MS

[
0 In1

]
S =

[
In1 X

]
, (6.6)

where MT and MS are square invertible matrices.

Proof. The right hand side of (6.5) implies that the column space of
[
In2

0

]
is

a right deflating subspace of the pencil Â− λB̂ with spectrum Λ(Â11, B̂11) =
Λ(A22, B22) and that the row space of

[
0 In1

]
is a left deflating subspace

of the pencil Â− λB̂ with spectrum Λ(Â22, B̂22) = Λ(A11, B11). The equality

with the left hand side then implies that the column space of T
[
In2

0

]
and

the row space of
[

0 In1

]
S span, respectively, the corresponding right and

left deflating subspaces of A− λB. Lemma 4.4.1 says these are also spanned,
respectively, by

[
−Y
In2

]
and

[
In1 X

]
. They must therefore be related by

invertible basis transformations MT and MS .
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Lemma 4.4.1 also provides a direct manner to compute the swapping equivalences
S and T if they are chosen as unitary in the form of (4.25). Lemma 4.4.4 provides
an error bound for this case.

We cannot rely on unitary equivalences to preserve the block tridiagonal structure
of the pencil. If, in the current setting, we use an equivalence transformation
in the class of invertible lower triangular matrices, we do preserve the block
tridiagonal structure according to Lemma 6.2.5.

In other words, we need to construct invertible lower triangular matrices LX
and LY such that[

In1 X
]

=
[

0 MX

]
LX , and

[
−Y
In2

]
= LY

[
MY

0

]
, (6.7)

where the matrices MX and MY are invertible.

Lemma 6.3.2. Let the pencil A− λB be given as in (6.4), where the spectra
of A11 − λB11 and A22 − λB22 are disjoint. Then there exist lower triangular
equivalence transformations LX and LY that swap the spectra of the diagonal
blocks in the transformed pencil LX(A− λB)LY if and only if the matrices

[
In1 X

] [ 0
In1

]
and

[
In2 0

] [ −Y
In2

]
, (6.8)

are invertible.

Proof. We first prove the rank conditions are necessary. The leading n2 × n2

block of
[
−Y
In2

]
= LY

[
MY

0

]
is the matrix

[
In2 0

] [ −Y
In2

]
=
([

In2 0
]
LY

[
In2

0

])
MY (6.9)

which must be invertible if MY is invertible and LY is lower triangular and
invertible. Similarly, the trailing n1×n1 block of

[
In1 X

]
=
[

0 MX

]
LX

is the matrix[
In1 X

] [ 0
In1

]
= MX

([
0 In1

]
LX

[
0
In1

])
(6.10)

which must be invertible if MX is invertible and LX is lower triangular and
invertible. We now prove the conditions are also sufficient. If the matrices (6.8)
are invertible, then so are the right hand sides of (6.9) and (6.10). We can then
choose MY such that the (1, 1)-block of LY is lower triangular and invertible
and MX such that the (2, 2)-block of LX is lower triangular and invertible, e.g.,
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by using QR factorizations of the matrices (6.8). Since the remaining blocks
of LY and LX are free to choose, we can complete these matrices to be lower
triangular and invertible, e.g. by choosing the (2, 2) block of LY to be In1 and
the (1, 1) block of LX to be In2 , i.e. :

LX :=
[

In2 0
M−1
X M−1

X X

]
, LY :=

[
−YM−1

Y 0
M−1
Y In1

]
. (6.11)

6.3.1 Diagonal scaling of transformations

The spectral transformations described above are clearly not unique and
since they are not orthogonal, we may ask the question what are the best
transformations in terms of numerical stability to perform the swapping. Since
the transformations LX and LY are constrained to be lower triangular there is
still a degree of freedom to scale them as follows :

DXLX , and LYDY

where DX and DY are real block diagonal matrices, with two blocks of
dimensions n2 × n2 and n1 × n1. Clearly, these additional diagonal scalings do
not affect the block structure and spectral properties of the transformed pencil
Â− λB̂.

We recall two theorems proven in [63, Theorem 8] and [8, Theorem 3.7], that
address the one-sided scaling problem.
Theorem 6.3.3 ( [63]). Let L̂X ∈ Rk×k and L̂Y ∈ Rk×k have, respectively,
equal row and column norms, then they are nearly optimally scaled in the sense
that

κ(L̂X) ≤
√
kmin
DX

κ(DXLX), and κ(L̂Y ) ≤
√
kmin
DY

κ(LYDY ).

Theorem 6.3.4 ( [8]). Let L̂X ∈ R(n1+n2)×(n1+n2) and L̂Y ∈ R(n1+n2)×(n1+n2)

have, respectively, two orthogonal block rows LX1 and LX2 and two orthogonal
block columns LY1 and LY2 of dimensions n1 and n2, then they are optimally
scaled under block diagonal transformations DX = diag{DX2 , DX1} and DY =
diag{DY2 , DY1}, where DXi , DYi ∈ Rni×ni for i = 1, 2 :

κ(L̂X) = min
DX

κ(DXLX), and κ(L̂Y ) = min
DY

κ(LYDY ).

Moreover,

κ(L̂X) = 1 + cos(φX)
sin(φX) , and κ(L̂Y ) = 1 + cos(φY )

sin(φY ) ,
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where φX and φY are the minimal angles between the spaces spanned by the
images of LX1 and LX2 and of LY1 and LY2 , respectively.

We point out that in the proposed construction (6.11), the first block row of LX
and the last block column of LY are already orthogonal and even orthonormal.
The additional scalings DX = diag{In2 , NX} and DY = diag{NY , In1} will
maintain the lower triangular structure in

LX :=
[

In2 0
NXM

−1
X NXM

−1
X X

]
, LY :=

[
−YM−1

Y NY 0
M−1
Y NY In1

]
,

and at the same time achieve the normalization constraint, provided we choose
lower triangular solutions for NX and NY in

M−1
X (In1 +XXT )M−TX = N−1

X N−TX , M−TY (In2 + Y TY )M−1
Y = N−TY N−1

Y ,

or, equivalently,

MT
X(In1 +XXT )−1MX = NT

XNX , MY (In2 + Y TY )−1MT
Y = NYN

T
Y .

6.3.2 Iterative refinement

The numerical implementation of the transformations LX and LY as described
in the previous section, does not imply that the (2, 1)-block in the transformed
pencil

Â− λB̂ =
[
Â11 − λB̂11 Â12 − λB̂12
∆A − λ∆B Â22 − λB̂22

]
.

can be safely dismissed. Just like this is not guaranteed in the unitary case, cfr.
Lemma 4.4.4.

Updating the equivalence transformation to further reduce (and then safely
dismiss) the n2×n1 block ∆A−λ∆B in Â−λB̂ can be done via a similar method
as in Section 4.4.2 but with lower triangular instead of unitary transformations.
We are interested in an equivalence transformation of the form:[

Ǎ11 − λB̂11 Ǎ12 − λB̂12
0 Ǎ22 − λB̂22

]
:= LX,up

[
λÂ11 − B̂11 Â12 − λB̂12
∆A − λ∆B Â22 − λB̂22

]
LY,up,

with,

LX,up :=
[
In2 0
0 NX

] [
In2 0
X In1

]
, LY,up :=

[
In2 0
Y In1

] [
NY 0
0 In1

]
,
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where NX and NY are lower triangular normalization factors to optimally
scale the corresponding block row and block column of LX,up and LY,up to be
orthonormal, and where (X,Y ) are computed from the system of quadratic
matrix equations

∆̂A + Â22Y +XÂ11 +XÂ12Y = 0, ∆̂B + B̂22Y +XB̂11 +XB̂12Y = 0.

These can be approximated by the system of linear equations

∆̂A + Â22Y +XÂ11 = 0, ∆̂B + B̂22Y +XB̂11 = 0,

since ‖X‖2 and ‖Y ‖2 are very small. The solution (X,Y ) of this linear system
can be computed using Kronecker products.

6.3.3 Special cases

Let us make this more explicit for the cases where n1 and n2 are either 1 or 2,
since these are the cases we need in practice.

Case n1 = n2 = 1

The system of equations (4.22) for the pencil

A− λB :=
[
a11 − λb11 a12 − λb12

0 a22 − λb22

]
becomes [

a11 −a22
b11 −b22

] [
y
x

]
=
[
a12
b12

]
.

Since
d := det

[
a11 −a22
b11 −b22

]
6= 0,

this system has the (unique) solution

x = det
[
a11 a12
b11 b12

]
/d, and y = det

[
a12 −a22
b12 −b22

]
/d.

The conditions of Lemma 6.3.2 become x 6= 0 and y 6= 0 and according to
Theorem 6.3.4, optimally scaled matrices are given by

LX =
[

1 0
0 (1 + x2)− 1

2

] [
1 0
1 x

]
and LY =

[
−y 0
1 1

] [
(1 + y2)− 1

2 0
0 1

]
.

Remark 6.3.5. The solvability conditions that x and y must be different from 0
can also be interpreted in terms of the data :

x 6= 0 ⇔ Λ(a11, b11) 6= Λ(a12, b12), y 6= 0 ⇔ Λ(a22, b22) 6= Λ(a12, b12).
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Case n1 = 2, n2 = 1

The system of equations (4.22) for the pencil

A− λB :=
[
A11 − λB11 a12 − λb12

0 a22 − λb22

]
now involves two 2× 1 vectors x and y that are a solution of[

A11 −a22I2
B11 −b22I2

] [
y
x

]
=
[

a12
b12

]
.

The conditions of Lemma 6.3.2 become y1 6= 0 and det
[

0 x1
1 x2

]
= −x1 6= 0

and according to Theorem 6.3.4, nearly optimally scaled matrices are given by:

LX =
[

1 0
0 NX

] 1 0 0
−x2 y1 0

1 0 x1


where the lower triangular scaling matrix NX orthonormalizes the bottom block
row of LX , and

LY =

 −y1 0 0
−y2 1 0

1 0 1

 (1 + y2
1 + y2

2)− 1
2 0 0

0 1 0
0 0 1

 .
Case n1 = 1, n2 = 2

This case is dual to the previous case and is skipped for the sake of brevity.

Case n1 = n2 = 2

The system of equations (4.22) for the pencil

A− λB :=
[
A11 − λB11 A12 − λB12

0 A22 − λB22

]
now involves two 2× 2 matrices X and Y that can be solved using Kronecker
products. The solvability conditions boil down to detX 6= 0, and detY 6= 0.
Nearly optimally scaled matrices can be obtained as follows. Let QX and QY
be orthogonal transformations such that QXX and Y QY are lower triangular,
then

LX =
[
I2 0
0 NX

] [
I2 0
QX QXX

]
and LY =

[
−Y QY 0
QY I2

] [
NY 0
0 I2

]
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where NX and NY both scale the corresponding column norms and row norms
to 1.

6.4 Swapping poles in symmetric block tridiagonal
pencils

In case A−λB is a symmetric, block tridiagonal pencil, it is natural to preserve
the symmetry by considering congruence transformations T (A− λB)TT , where
T is a nonsingular matrix, that simultaneously swap two consecutive poles on
both the subdiagonal and superdiagonal.

To illustrate how this is done, we consider a 5× 5 tridiagonal pencil

A− λB =


a11 a21
a21 a22 a32

a32 a33 a43
a43 a44 a54

a54 a55

− λ

b11 b21
b21 b22 b32

b32 b33 b43
b43 b44 b54

b54 b55


in which we want to swap the pole pencils λb32 − a32 and λb43 − a43. This is
achieved by computing row and column transformation transformations[

1 0
x21 x22

]
, and

[
y11 0
y21 1

]
,

applied to rows 3 and 4, and columns 2 and 3 respectively, and where the
vectors [x21 x22] and [y11 y21]T are computed as explained in Section 6.3.3 and
normalized to row and column norm 1, respectively. This transformation swaps
the subdiagonal poles. To preserve the symmetry in A − λB the transposed
transformations are also applied to the pencil as they swap the same poles on
the superdiagonal. Both transformations can be combined in the 3× 3 row and
column transformations

T =

 y11 y21 0
0 1 0
0 x21 x22

 , and TT =

 y11 0 0
y21 1 x21
0 0 x22

 ,
which moreover still have normalized rows and columns, respectively. According
to Theorem 6.3.3, these combined transformations are therefore nearly optimally
scaled.

It is also possible to combine pole swaps involving one or two 2 × 2 blocks
into a congruence transformation on a symmetric, block tridiagonal pencil. We
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consider the problem of swapping two 2× 2 blocks in A− λB. The other cases
proceed similar. Below, we show a 6× 6 symmetric pencil, where the diagonal
blocks of the 5× 5 sub-pencil are of dimension (2, 2, 1):

a11 a21 a31
a21 a22 a32
a31 a32 a33 a43 a53

a43 a44 a54
a53 a54 a55 a65

a65 a66

− λ

b11 b21 b31
b21 b22 b32
b31 b32 b33 b43 b53

b43 b44 b54
b53 b54 b55 b65

b65 b66

 .

The pencil is partitioned according to the first partitioning of (6.3). If we want
to swap the spectra of the two 2-dimensional blocks on the subdiagonal, we
must apply the lower 4× 4 triangular row and column transformations:[

I2
X21 X22

]
, and

[
Y11
Y21 I2

]
,

to rows 2 to 5 and columns 1 to 4, respectively. The matrices X22 and Y11 are
invertible and lower triangular and the last block row and first block column
make up the deflating subspaces of Lemma 4.4.1. To preserve the symmetry
they are combined in a single 5× 5 congruence transformation,

T =

 Y T11 Y T21
1

X21 X22

 ,
which must be applied to rows 1 to 5, while its transpose is applied to columns
1 to 5. This implies that X22 and Y11 must be brought to lower triangular form
by invertible upper triangular transformations RX and RY ,

RX
[
I X

]
=
[
X21 X22

]
and

[
−Y
I

]
RY =

[
Y11 Y21

]
,

to preserve the deflating subspaces in T . The congruence transformation T can
be nearly optimal scaled by a diagonal scaling to equal row norms.

6.5 Pole introduction

Introducing poles in a block tridiagonal pencil A− λB is achieved in two steps
that are similar to the (block) Hessenberg case in Chapter 4.

To change the first pole(s) on the subdiagonal, we first compute the vector x
according to (4.14). Afterwards, we compute an invertible, lower triangular
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matrix LX such that LXx = γe1. We can use Gaussian transformations for
this. LX can be nearly optimally scaled to equal row norm by a diagonal
scaling. It follows from the argument provided in Chapter 4 in combination
with Theorem 6.6.1 that the first subdiagonal poles in LX(A− λB) have been
changed accordingly. The tridiagonal structure and all other poles are preserved
according to Lemma 6.2.5.

The last pole(s) on the subdiagonal can be changed in (A− λB)LY by a nearly
optimally scaled, invertible, lower triangular matrix LY such that xTLY = γeTn
with x computed from (4.18).

Changing the first and last pole(s) on the superdiagonal is equivalent to
respectively changing the first and last pole(s) on the subdiagonal of AT −λBT .

Simultaneous introduction of the same first or last pole(s) in a symmetric, block
tridiagonal pencil is simply achieved by respectively computing LX or LY as
described above and applying them as a congruence transformations:

LX(A− λB)LTX and LTY (A− λB)LY .

6.6 Rational LR and TTT (T3) algorithms

Let A−λB be a proper (block) tridiagonal pencil with lower pole tuple Ξ(A,B)
and upper pole tuple Ψ(A,B). A lower rational LR (RLR) sweep computes a
lower triangular equivalence transformation,

Â− λB̂ := LX(A− λB)LY , (6.12)

based on the following three steps:

I. Select or compute some shift(s) and introduce them as the first subdiagonal
pole(s) by computing LX,in(A− λB) based on Section 6.5,

II. Swap these pole(s) with the methods of Section 6.3 along the subdiagonal
to the final subdiagonal position in LX,swLX,in(A− λB)LY,sw,

III. Select or compute some pole(s) and introduce them as the final subdiagonal
pole(s) by computing LX,swLX,in(A−λB)LY,swLY,in based on Section 6.5.

The final equivalence (6.12) is given by the accumulated lower triangular
transformations LX := LX,swLX,in and LY := LY,swLY,in.

Similarly, an upper rational LR sweep computes an upper triangular equivalence
transformation,

Â− λB̂ := RX(A− λB)RY , (6.13)
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based on the same three steps applied to AT − λBT and with RX = LTY ,
RY = LTX .

In a practical implementation of an RLR-type algorithm it is possible to handle
lower RLR sweeps to large extent in parallel with upper RLR sweeps. If the
chasing procedures along the subdiagonal and superdiagonal are performed in
opposite directions, they only influence each other when they cross each other.
The same is true however for a bidirectional chase along the subdiagonal. At
the moment of writing, it is still unclear if this interesting property of the RLR
algorithm can exploited. A parallel implementation is also future work.

If the (block) tridiagonal pencil A − λB is symmetric and diagonalizable, it
is natural to use a rational TTT (RTTT or RT3) sweep which computes a
congruence transformation,

Â− λB̂ := T (A− λB)TT , (6.14)

based on the same three steps that now chase a shift simultaneously along
the subdiagonal and superdiagonal making use of the symmetric swaps from
Section 6.4.

The computational cost of a single lower RLR (6.12), upper RLR (6.13) or RTTT

(6.14) step is O(n) if only Â− λB̂ computed. This follows from the observation
that all pole introduction and swapping methods require O(1) operations since
they preserve the tridiagonal structure. If the equivalence transformations are
accumulated throughout the algorithm, the cost of a single sweep increases
to O(n2) as these involve row and column updates of dimension n. If the
overall algorithm converges in O(n) iterations, the total computational cost of
computing the eigenvalues of A− λB is O(n2) or O(n3) if the equivalences are
accumulated.

6.6.1 Uniqueness and convergence

In this section we provide some uniqueness and convergence results for a
single shift lower and upper RLR sweep on a tridiagonal pencil based on the
theory of Chapter 3. We omit the block generalization, but any proper block
tridiagonal pencil can be reduced to a tridiagonal pencil via a similar procedure
as Lemma 4.2.7 but with either lower or upper triangular equivalences.

Theorem 6.6.1 (Implicit LR theorem). Let A − λB be a proper tridiagonal
pencil with lower pole tuple Ξ(A,B), upper pole tuple Ψ(A,B) and with all the
poles different from the spectrum.



RATIONAL LR AND TTT (T3) ALGORITHMS 139

Let L̂X , ĽX , L̂Y and ĽY be invertible, lower triangular matrices with L̂−1
X e1 =

αĽ−1
X e1, α ∈ C \ {0}, such that

Â− λB̂ := L̂X(A− λB)L̂Y , and Ǎ− λB̌ := ĽX(A− λB)ĽY ,

are both proper tridiagonal pencils having the same lower pole tuple Ξ̆(A,B)
with poles different from the spectrum. Then Â−λB̂ and Ǎ−λB̌ are essentially
identical in the sense that L̂X = DX ĽX and L̂Y = ĽYDY with DX and DY

invertible diagonal matrices.

Similarly, let ŔX , R̃X , ŔY and R̃Y be invertible, upper triangular matrices with
eT1 Ŕ

−1
X = αeT1 R̃

−1
X , α ∈ C \ {0}, such that

Á− λB́ := ŔX(A− λB)ŔY , and Ã− λB̃ := R̃X(A− λB)R̃Y ,

are both proper tridiagonal pencils having the same upper pole tuple Ψ̆(A,B)
with poles different from the spectrum. Then Á−λB́ and Ã−λB̃ are essentially
identical in the sense that ŔX = DXR̃X and ŔY = R̃YDY with DX and DY

invertible diagonal matrices.

Proof. The idea of the proof of the first statement is the same as in the proof
of Theorem 3.6.1. Using Corollary 3.6.8 and the shorthand notation,

M̂i = L̂XMiL̂
−1
X , and M̌i = ĽXMiĽ

−1
X ,

for the elementary rational matrices (3.7) with shift %i and pole ξi before and
after the equivalence. We get the following equalities,

L̂−1
X Krat

n (Â, B̂, e1, Ξ̆,P) = L̂−1
X

[
e1 M̂1 e1 . . .

∏n−1
i=1 M̂i e1

]
= αĽ−1

X

[
e1 M̌1 e1 . . .

∏n−1
i=1 M̌i e1

]
= Ľ−1

X Krat
n (Ǎ, B̌, e1, Ξ̆,P),

which is an equality between two LU decompositions which is unique up to
an invertible diagonal matrix DX , i.e. L̂−1

X = Ľ−1
X D−1

X . We now show that
L̂Y e1 = α̃ĽY for some nonzero α. This follows from:

Â− ξ̆1B̂ = L̂X(A− ξ̆1B)L̂Y , and Ǎ− ξ̆1B̌ = ĽX(A− ξ̆1B)ĽY ,

with ξ̆1 the same first subdiagonal pole in Â− λB̂ and Ǎ− λB̌. Which yields,

L̂Y e1 = (A− ξ̆1B)−1L̂−1
X (Â− ξ̆1B̂)e1

ĽY e1 = (A− ξ̆1B)−1Ľ−1
X (Ǎ− ξ̆1B̌)e1.
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It follows that L̂Y e1 = α̃ĽY because (Â − ξ̆1B̂)e1 = α̂e1 and (Ǎ − ξ̆1B̌)e1 =
α̌ for some nonzero α̂, α̌. The proof of uniqueness of LY now follows from
Corollary 3.6.8 just like before The second part of the theorem is essentially
the same as the first part but for AT − λBT .

Theorem 6.6.1 implies that the result of a lower and upper RLR sweep is uniquely
determined if the shift in step I and the pole in step III of the algorithm are
fixed because choosing the shift for a lower RLR sweep determines L−1

X e1 = γx
up to scaling. The same is valid for an upper RLR sweep. We also have that
congruence transformation applied in an RT3 step on a proper, symmetric
tridiagonal pencil is unique up to an invertible diagonal transformation as it
just combines the lower and upper RLR sweeps.

We can also extend the convergence result of Theorem 3.7.3 to the non-unitary
setting in a straightforward manner.

Theorem 6.6.2. Let A − λB be a proper tridiagonal pencil with lower pole
tuple Ξ(A,B), upper pole tuple Ψ(A,B) and with all the poles different from
the spectrum. A lower RLR sweep (6.12) with shift % and new pole ξn performs
nested subspace iteration with a change of basis, similar to Theorem 3.7.3,
accelerated by:

R
(
L−1
X (:, 1 : k)

)
= M(%, ξk)Ek, and R (LY (:, 1 : k)) = N(%, ξk+1)Ek.

Similarly an upper RLR sweep with shift % and new pole ψn implicitly performs
nested subspace iteration accelerated by:

R
(
RTX(:, 1 : k)

)
= M(%, ψk+1)TEk, and R

(
R−TY (:, 1 : k)

)
= N(%, ψk)TEk.

In case A− λB is symmetric, an RT3 sweep with shift % and new pole ξn = ψn
implicitly performs nested subspace iteration accelerated by:

R
(
T−1(:, 1 : k)

)
= M(%, ξk)Ek = N(%, ψk)TEk,

R
(
TT (:, 1 : k)

)
= N(%, ξk+1)Ek = M(%, ψk+1)TEk.

We omit the proof as it is the same as the proof of Theorem 3.7.3. The
interpretation of this result is also the same as in Chapter 3: a good selection of
shifts and poles for lower RLR sweeps leads to rapid deflations of eigenvalues by
driving subdiagonal elements in A− λB to zero, while a good selection of shift
and poles for the upper RLR sweeps has the same effect on the superdiagonal. In
the RT3 case, convergence occurs simultaneously on the sub- and superdiagonals.
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6.7 Numerical experiments

As a “proof of concept” we test our implementation of the RT3 algorithm on
randomly generated, symmetric matrix pencils. The real-valued matrices A
and B, defining the pencils, are generated by first drawing their entries from
the standard normal distribution and afterwards taking the symmetric part
(A+AT , B +BT ). The result is an indefinite dense, symmetric pencil which
is very likely to be block diagonalizable1 having blocks of dimension 1 for real
eigenvalues and dimension 2 for complex-conjugate eigenvalues.

These pencils are first reduced to symmetric tridiagonal form having all poles
at 1 via the reduction algorithm of Sidje [108]. Finally, the RT3 algorithm for
symmetric, block tridiagonal pencils is used to reduce them to a congruent block
diagonal pencil. The results of this experiment are summarized in Figures 6.1
and 6.2 for pencils of dimension 50 up to 200.
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Figure 6.1: Results of a numerical experiment with the RT3 algorithm on
indefinite symmetric pencils. Error on the eigenvalues (left), swaps/n2 (middle),
and CPU time with least-squares fit (right).

The left pane of Figure 6.1 shows the relative error on the eigenvalues obtained
with RT3 in comparison to Matlab’s eig function. We observe an accuracy of
about 9 to 10 digits. The middle pane shows that we need about two swaps
per eigenvalue squared, which is more than for the experiments in Chapters 3
and 5. It signals that convergence is slower. A potential explanation is that
our deflation criteria are not yet on par with the criteria used in the RQZ
method. We tested for a deflation by comparing subdiagonal blocks with the
norm of (block) diagonal elements, but since the non-unitary transformations
do not preserve the norm of the pencil, this could be suboptimal. Nonetheless,
the CPU time shown in the right pane does closely match the expected O(n2)
complexity in case the congruence transformations are not accumulated. The

1We did confirm numerically that the pencils are block diagonalizable, this is possibly
an extension of the result that the set of non-diagonalizable matrices has measure zero. An
analysis is outside the scope of this thesis.
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dashed line shows the least-squares fit of the data with a leading exponent of
O(n1.9).
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Figure 6.2: Part 2 of the results of a numerical experiment with the RT3
algorithm on indefinite symmetric pencils of dimension 50. Growth of the κ(T )
throughout the RT3 algorithm in black and κ(V ) in red (left), eigenvalues from
eig in black and from RT3 in red (right).

The left pane of Figure 6.2 displays the growth in the condition number κ(T )
throughout the RT3 algorithm for a problem of dimension 50. The condition
number of the eigenvectors computed with Matlab, κ(V ), is shown in red. In
this example, the eigenvectors from RT3 have a condition number that is about
one order of magnitude larger than Matlab and are thus suboptimal. The right
part shows the spectrum of the pencil computed by RT3 and eig.

6.8 Conclusion

This chapter proposed and studied non-unitary pole swapping methods for
computing the eigenvalues of (block) tridiagonal pencils. The algorithms require
O(n2) operations but numerical stability is a difficult problem.

Nearly optimal scaled lower and upper triangular equivalence transformations
were proposed for general (block) tridiagonal pencils and nearly optimal scaled
congruence transformations for diagonalizable, symmetric tridiagonal pencils.
The resulting RLR and RT3 algorithms perform a two-sided iteration accelerated
by rational functions.

Numerical experiments confirm the validity of our approach but also highlight
the remaining challenges. Future work entails a detailed analysis of the stability
of the proposed schemes for certain subclasses of tridiagonal eigenproblems and
the inclusion of (partial) balancing [77].



Chapter 7

Implicitly filtering the rational
Krylov method

This chapter is based on the papers [19,20]:

Camps D., Meerbergen K., and Vandebril R. A rational QZ
method. (2019) SIAM J. Matrix Anal. Appl. Vol. 40, No. 3, pp.

943–972.
Camps D., Meerbergen K., and Vandebril R. An implicit filter
for rational Krylov using core transformations. (2019) Linear Algebra
and its Applications. Volume 561, 15 January 2019, Pages 113-140.

7.1 Introduction

The Arnoldi algorithm, discussed in Section 2.2.2, exhibits an orthogonalization
cost which increases quadratically in the subspace dimension, while the storage
requirements depend linearly on the number of basis vectors. This cost can
become prohibitive for large-scale problems where the eigenvalues of interest
are difficult to approximate in a limited number of iterations. This problem can
be adequately solved by a restart of the Arnoldi method. Sorensen introduced
the implicitly restarted Arnoldi method (IRA) [111]. His algorithm applies
implicitly shifted QR steps [39, 40] to the Arnoldi Hessenberg matrix Hm.
Starting from an Arnoldi decomposition (2.29) related with a Krylov subspace

143
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of dimension m+1, IRA implicitly applies p shifted QR steps with shifts {%i}pi=1
to end up with a reduced order Arnoldi decomposition related with the Krylov
subspace Km−p+1(A, p(A)v) with p(A) =

∏p
i=1(A − %iI). This process is

depicted schematically as:

Km+1(A,v)
p(z)=

∏p

i=1
(z−%i)

−−−−−−−−−−−−→
p shifted QR steps

Km−p+1(A, p(A)v).

IRA implicitly applies a polynomial filter determined by the shifts to the
polynomial Krylov subspace. The implicitly restarted Arnoldi method was
further analyzed by Morgan [84] and refined by Lehoucq & Sorensen [75]. It
is to this date still used by ARPACK [76] to compute a few eigenpairs of a
large-scale matrix. ARPACK is called by Matlab when eigs is invoked.

Stewart [112] introduced the Krylov-Schur algorithm where a proper subspace is
extracted from the Krylov subspace via the Schur decomposition of the Arnoldi
Hessenberg matrix.

In this chapter we apply the pole swapping technique of the RQZ method to
implicitly apply a rational filter in the rational Krylov method. This approach
can be viewed as a generalization of the use of the QR method in the implicitly
restarted Arnoldi method. The pole swapping technique for the rational Krylov
method was first proposed by Berljafa & Güttel in [11, Section 4.3]. Our
additional contribution to this result is twofold. First, we make the connection
with the RQZ method and the theory of Chapter 3, which allows us to easily
characterize the implicit filter. Second, we compare the implicit filter with the
filter method proposed by De Samblanx, Meerbergen & Bultheel [27]. Their
method uses an explicit QZ step on the rational Krylov Hessenberg pencil. We
will demonstrate in our numerical examples that the implicit pole swapping
approach has several advantages over the explicit method.

The chapter is organized as follows. Section 7.2 introduces the rational Krylov
method as an iterative method to construct an orthonormal basis for a rational
Krylov subspace. We review how eigenvalue approximations can be extracted
from the rational Krylov method and show in Lemma 7.2.5 that this is possible
by computing the eigenvalues of a small-scale Hessenberg pair. This small-scale
problem can be easily solved with the RQZ algorithm. We also study the matrix
structure which is encoded in the Galerkin projection on a rational Krylov
basis. Section 7.3 describes how the pole swapping technique is used to filter the
rational Krylov method. Section 7.4 illustrates the implicitly filtered rational
Krylov algorithm with four numerical examples that indicate that the method
can outperform comparable methods. Some concluding remarks are given in
Section 7.5.
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7.2 Rational Krylov methods

The rational Krylov method was originally introduced by Ruhe in 1984 [92] and
revisited by the same author in a series of papers [93–95] a decade after the
initial article. The initial work of Ruhe culminates in [96] and by that time
research into rational Krylov methods really started to gain traction [27,74,110].

Ruhe proposed the rational Krylov method for the solution of the eigenvalue
problem and this will also be our main application of interest for rational Krylov
in this thesis. Rational Krylov methods have been successful in many more
applications after their introduction. Examples include – but are not limited
to – the solution of nonlinear eigenvalue problems [52, 97, 117, 118], matrix
equations [30,109], model order reduction [7,32,47–49], and the computation of
f(A)v, i.e. the action of a matrix function on a vector [31,44,51].

7.2.1 Rational Krylov matrices and subspaces

In this section we briefly specify the rational Krylov theory from Section 3.6.1,
which is formulated for matrix pairs, to the matrix case. The following
elementary property is of great use to study the rational Krylov matrices
and subspaces generated by a matrix. It is the well-known result that any
matrix commutes with its (shifted) inverse.

Property 7.2.1 (Commutativity). Given a matrix A, shift % ∈ C̄, and pole
ξ ∈ C̄ \ Λ(A), we have that:

(A−%I)(A−ξI)−1 = (A−ξI)−1(A−%I).

It follows from this property that the elementary rational matrices (3.8) for a
single matrix A, which corresponds with the pencil (A, I) satisfy,

M(%, ξ) = N(%, ξ).

Consequently, we also have,

Krat
k (A, I,v,Ξ,P) = Lrat

k (A, I,v,Ξ,P),

Krat
k (A, I,v,Ξ) = Lrat

k (A, I,v,Ξ),

according to Definitions 3.6.2 and 3.6.5. We can thus define a single rational
Krylov matrix and subspace for the matrix case. The following definition
specifies this and applies property II of Lemma 3.6.6 to the matrix case.
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Definition 7.2.2 (rational Krylov matrix and subspace). Let A ∈ Fn×n,
v ∈ Fn \ {0}, Ξ = (ξ1, . . . , ξm), ξi ∈ C̄ \ Λ(A), the pole tuple, and P =
(%1, . . . , %m), %i ∈ C̄ \ Ξ, the shift tuple. The corresponding rational Krylov
matrix, Krat

m+1 ∈ Fn×(m+1), is defined as:

Krat
m+1(A,v,Ξ,P) = Krat

m+1(A, I,v,Ξ,P) (7.1)

The rational Krylov subspace,

Krat
m+1(A,v,Ξ) = R

(
Krat
m+1(A,v,Ξ,P)

)
, (7.2)

is defined as the columnspace of the rational Krylov matrix. The rational Krylov
subspace satisfies:

Krat
m+1(A,v,Ξ) = qm(A)−1Km+1(A,v) = Km+1(A, qm(A)−1v), (7.3)

with qm(z) =
∏m
i=1(z − ξi) ∈ Pm, a polynomial with roots Ξ. Every root in Ξ

equal to ∞ reduces the degree of qm by one.

Observe that (7.3) shows that a rational Krylov subspace is nothing else than
a Krylov subspace with a special starting vector. This result follows from
Lemma 3.6.6, but by using Property 7.2.1 it can be easily proven directly in
the matrix case.

Proof of (7.3). Combining (7.2) with Property 7.2.1 gives:

Krat
m+1(A, v,Ξ) =

m∏
i=1

(A−ξiI)−1 · R

(
m∏

i=1

(A−ξiI)v, (A−%1I)
m∏

i=2

(A−ξiI)v, . . . ,
m∏

i=1

(A−%iI)v

)
.

As the shifts P are chosen different from the poles Ξ, the vectors remaining inside
R(·) in the equation above are m+1 vectors of the form pm(A)v with pm ∈ Pm
a polynomial of degree ≤ m having at least 1 root distinct from all other
polynomials. It follows by a simple inductive argument that the polynomials
are linearly independent under the conditions on Ξ and P. Consequently, the
subspace R(·) above is isomorphic to the subspace R (pm(A)v | pm ∈ Pm), i.e.
the Krylov subspace Km+1(A,v).

7.2.2 Ruhe’s iterative method

Algorithm 2 lists the rational Krylov algorithm, also known as the ratio-
nal Arnoldi algorithm. It iteratively constructs an orthonormal basis of
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Krat
m+1(A,v,Ξ). Comparing this algorithm to Algorithm 1, the only difference

is in lines 4 and 5 where first the continuation combination is computed or
selected and next a rational expansion step is taken. The remaining part of the
algorithm just uses modified Gram-Schmidt to orthonormalize the basis vectors.

Algorithm 2 rational Krylov algorithm [92,93,96]
Input: A, v, m
1: Start: v1 ← v/ ‖v‖2
2: Iterate:
3: for j = 1, 2, . . . ,m do
4: ξj = αj/βj , %j = γj/δj , and tj ∈ Cj . Cont. combination
5: vj+1 ← (δjA−γjI)(βjA−αjI)−1 Vjtj . Rational expansion
6: for i = 1, . . . , j do . modified Gram-Schmidt
7: hi,j ← v∗i vj+1
8: vj+1 ← vj+1 − hi,jvi
9: end for

10: hj+1,j ← ‖vj+1‖2 . normalize
11: vj+1 ← vj+1 / hj+1,j
12: end for

The continuation combination consists of the pole ξj , the shift %j , and the
continuation vector tj which is used to construct a vector Vjtj to expand the
subspace with in line 5. In the Arnoldi method, the continuation vector is
always tj = ej as the subspace is expanded with Avj , cfr. Algorithm 1. We
will discuss the choice of continuation combination in some more detail in a
moment.

Inspecting Algorithm 2, we observe the following recurrence relation at iteration
j:

(δjA−γjI)(βjA−αjI)−1Vjtj =
j+1∑
i=1

hi,jvi, (7.4)

which is the rational Krylov variant of (2.28). Using Property 7.2.1 to reorder
the left-hand side and rewriting the right-hand side as a matrix-vector product
gives,

(βjA−αjI)−1(δjA−γjI)Vjtj = Vj+1hj , (7.5)

with hj ∈ Fj+1 the vector of orthonormalization coefficients. Left multiplication
with (βjA−αjI) yields:

(δjA−γjI)Vjtj = (βjA−αjI)Vj+1hj , (7.6)
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which can be rearranged to:

AVj+1(δjtj − βjhj) = Vj+1(γjtj − αjhj), (7.7)

with tTj =
[
tTj 0

]T If we combine iterations j = 1, . . . ,m, we get the rational
Krylov recurrence relation:

AVm+1Km = Vm+1Lm, (7.8)

where Lm,Km ∈ F(m+1)×m are a pair of Hessenberg matrices with the nonzero
entries in column j equal to:

kj = δjtj − βjhj , and, `j = γjtj − αjhj . (7.9)

It follows that the Hessenberg pairs satisfies `j+1,j/kj+1,j = αj/βj = ξj , i.e.
the poles used in the rational Krylov algorithm are encoded in the Hessenberg
matrices Lm,Km as the ratio of their subdiagonal elements. We refer to
(Lm,Km) as the rational Krylov Hessenberg pair and to (Vm+1, Lm,Km) as the
rational Krylov triplet. The rational Krylov Hessenberg pair is of full rank m as
long as there is no breakdown in line 10 [27]. We call both the rational Krylov
Hessenberg pair and triplet proper if no breakdown occurs. It is easy to verify
that properness of the rational Krylov Hessenberg pair is in agreement with
two out of three conditions of Definition 3.2.1. Only the condition on the last
rows of the pencil does not hold because of the rectangular form.

Let us now return to the problem of choosing the continuation combination
which is used for the expansion step. The first parameter is the pole ξj . Poles
are typically chosen in such a way that the method rapidly converges to the
quantities of interest. This makes pole selection a highly nontrivial problem.
Optimal strategies have been proposed for the solution of matrix functions [51]
and the convergence of eigenvalue approximations in rational Krylov iterations
has been studied in [9]. The second parameter, %, and the third parameter,
t, do not affect the resulting subspace, i.e. R(Vm+1) in (7.8) is independent
of the choice of shift and continuation vector as long as admissible shifts and
continuation vectors are used [12]. Admissible means that the vector computed
in line 5 satisfies:

(A−%jI)(A−ξjI)−1 Vjtj /∈ R(Vj), (7.10)
such that the subspace is expanded. An admissible shift and continuation
vector always exist as long as the subspace is not A-invariant [12,96]. This is
also a corollary of Theorem 3.6.4 and Lemma 3.6.6. A common choice for the
continuation vector tj is [96]:

tj =
{

ej if ξj = ξj−1, or j = 1
qj = Qjej otherwise

, (7.11)
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with Qj computed from the QR factorization of βjLj−1 − αjKj−1. Choosing
tj according to (7.11) ensures an admissible continuation combination for any
choice of shift [12].

Berljafa & Güttel have proven existence and essential uniqueness results for
rational Krylov decompositions (7.8) in [11]. These are summarized in the
following two results.

Theorem 7.2.3 (Theorem 2.5 in [11]). Let (Vm+1, Lm,Km) be a proper rational
Krylov triplet satisfying (7.8) for A ∈ Fn×n. Let v = Vm+1e1, and Ξ =
(ξ1, . . . , ξm), ξi /∈ Λ(A), be the poles of the rational Krylov Hessenberg pair.
Then we have, for k = 1, . . . ,m+ 1:

R(Vk) = Krat
k (A,v,Ξ).

Theorem 7.2.4 (Theorem 3.2 in [11]). If the starting vector v and the ordering
of the poles Ξ is fixed, then a proper rational Krylov triplet, (Vm+1,Km, Lm),
satisfying (7.8) is unique up to equivalent triplets of the form,

(Vm+1Dm+1, D
∗
m+1KmRm, D

∗
m+1LmRm),

with Dm+1 ∈ F(m+1)×(m+1) a unitary diagonal matrix, and Rm ∈ Fm×m a
nonsingular upper triangular matrix.

The combination of these results indicates that Algorithm 2 produces a rational
Krylov recurrence which is linked uniquely with a rational Krylov subspace up
to equivalent triplets.

Extended Krylov

A special case of rational Krylov is the extended Krylov method. This
specification of rational Krylov was originally proposed by Druskin &
Knizhnerman in 1998 [29] for the approximation of matrix functions and studied
further by Knizhnerman & Simoncini [64].

The extended Krylov method is nothing else then the rational Krylov method
where the choice of poles is limited to ξj ∈ {0,∞}. This implies that the matrix
A must be nonsingular to construct an extended Krylov subspace. In every
step of Algorithm 2, the rational expansion is in the extended Krylov method
performed either with AVjtj or A−1Vjtj .

The resulting extended Krylov Hessenberg pair (Lm,Km) has the property that
`j+1,j = 0 when ξj = 0, and kj+1,j = 0 when ξj =∞, i.e. there is exactly one
nonzero subdiagonal element for every column j. This is in agreement with the
extended Hessenberg pencils introduced in Appendix A.
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The extended Krylov method can, in some cases, be preferred over the rational
Krylov method. It has fewer free parameters making it less difficult to select
the poles. Furthermore, it requires only one matrix factorization to solve the
linear systems in Algorithm 2, while the rational Krylov method requires a new
factorization for every unique pole.

7.2.3 Ritz values in rational Krylov

To use the rational Krylov algorithm for eigenvalue problems, we need a way to
extract approximate eigenvalues or Ritz values satisfying a Galerkin constraint.
Just like for the Arnoldi method where the Ritz values can be computed as
the eigenvalues of the leading m×m upper Hessenberg matrix Hm according to
(2.35). To get a Galerkin projection condition (Definition 2.2.7), we require an
orthogonality constraint against an m-dimensional subspace of Krat

m+1(A,v,Ξ).
A common choice for Ritz values in rational Krylov is V = R(Vm+1Km) [10].
The following lemma characterizes a generalized eigenvalue problem satisfying
this constraint.

Lemma 7.2.5 (Ritz values in rational Krylov). Let (Vm+1, Lm,Km) be a
rational Krylov triplet satisfying a rational Krylov recurrence (7.8) for A ∈ Fn×n.
Then (ϑ, z = Vm+1Kmym) is a Ritz pair of A with respect to R(Vm+1Km) if
and only if (ϑ,ym) is an eigenpair of the m×m Hessenberg pencil:

(L̃m, K̃m) = (Lm + `m+1,mk̄m+1,mfmeTm,Km + |km+1,m|2fmeTm), (7.12)

with fm = K−∗m em.

Proof. (ϑ, z = Vm+1Kmym) is a Ritz pair of A with respect to R(Vm+1Km) if
and only if:

Vm+1Km ⊥ Az − ϑz = AVm+1Kmym − ϑVm+1Kmym

= Vm+1(Lm − ϑKm)ym,

which is satisfied if:
K∗m(Lm − ϑKm)ym = 0.

The Ritz values are thus the eigenvalues of the pencil (K∗mLm,K∗mKm). This is
not a Hessenberg, Hessenberg pencil but left multiplication with the nonsingular
matrix K−∗m gives the equivalent Hessenberg, Hessenberg pencil (L̃m, K̃m) of
(7.12).

The Hessenberg pencil (L̃m, K̃m) in (7.12) only differs from (Lm,Km) in its last
column and a single m×m linear system with the lower Hessenberg matrix K∗m
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needs to be solved to compute the update vector fm. The rational QZ method
can be directly used to compute the eigenvalues of (L̃m, K̃m). We remark that,
in case ξm = ∞, km+1,m = 0 which means that (L̃m, K̃m) = (Lm,Km) by
(7.12).

As shown in the proof of Lemma 7.2.5, the Ritz values are also equal to
the eigenvalues of (K∗mLm,K∗mKm). This pencil can be transformed to the
equivalent matrix (K∗mKm)−1K∗mLm which is equal to:

Hrat
m = K†mLm, (7.13)

with K†m the Moore-Penrose pseudoinverse of the full rank matrix Km [46].
Hrat
m is referred to as the Galerkin projection of A on R(Vm+1Km), similar to

the polynomial Krylov case. We will show in the next section that Hrat
m has a

rational Hessenberg structure. The Ritz values are clearly also determined by
the eigenvalues of Hrat

m , however, in practice using (7.12) to determine the Ritz
values has two main advantages. Firstly, it is computationally less expensive to
compute (7.12) than (7.13). The former requires the solution of a single linear
system of dimension m, the latter requires m least-square solves. Secondly, the
Hessenberg pencil in (7.12) can be directly solved with RQZ, while the matrix
(7.13) first needs to be reduced to Hessenberg form.

Ritz values in the rational Krylov method often converge much faster to the
eigenvalues of interest compared to the polynomial Krylov method provided
a good choice of poles is made. We illustrate the convergence behaviour in
Figure 7.1 which shows a Ritz plot obtained with the rational Krylov method
where the poles are cyclically chosen at 18, 20.05, and 22, for the same matrix that
was studied in Figure 2.1. Compared to the Arnoldi method, the convergence
of eigenvalues in the interior part of the spectrum now proceeds much faster
and the extremal eigenvalue at 39 only converges near the end of the iteration.

The convergence of rational Ritz values was studied in detail in [9] where it is
shown that poles do attract convergence of Ritz values.

7.2.4 Structure in the Galerkin projection

In this section, we study the matrix structure of the Galerkin projection
(7.13) of the original large-scale problem onto the rational Krylov subspace
R(Vm+1Km). To this end, we consider the core factorized form of the rational
Krylov Hessenberg pair in combination with the transfer operation for core
transformations. The transfer operation is introduced in Appendix A.

It is well-known that the Galerkin projection on a rational Krylov subspace
is of a particular rank-structured form in the Hermitian case [38] and the
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Figure 7.1: Convergence of rational Ritz values.

unsymmetric case [79,115]. We will prove this same result but via a direct proof
that exploits the matrix structure instead of using the theory of orthogonal
rational functions [79,115]. Up to our knowledge this is a novel approach for
this result.

Let us start with recapitulating the appropriate matrix structures. These are
also illustrated in Figure 7.2. We are already acquainted with the factorized
representation of the Hessenberg matrix shown in pane I. Lemma 2.2.8 shows that
the Galerkin projection on a polynomial Krylov subspace has this structure. The
extended Hessenberg structure illustrated in pane II provides additional flexibility
by admitting different orderings in the sequence of core transformations. Finally,
pane III shows an example of an extended Hessenberg plus diagonal matrix.
Lemma 7.2.6 shows that this matrix structure is linked with the Galerkin
projection on a rational Krylov subspace. For this reason, we introduce
the alternative name rational Hessenberg matrix for this matrix structure.
Appendix A provides more information on extended Hessenberg matrices and
the transfer operation for core transformations which we use for the proof of
Lemma 7.2.6.

Lemma 7.2.6. Let (Vm+1,Km, Lm) be a proper rational Krylov triplet
corresponding to the rational Krylov subspace Krat

m+1(A,v1,Ξ = (ξ1, . . . , ξm)).
Consider the vector d ∈ Cm with di = ξi for ξi 6= ∞, otherwise di can be
any scalar. Then we have that Hrat

m = K†mLm is a rational Hessenberg matrix
QR+D with:

- Q = Ck1 . . . Ckm−1 satisfying
[
Ci Ci+1 if ξi+1 =∞
Ci+1 Ci if ξi+1 6=∞

, i = 1, . . .m−2,
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Figure 7.2: Examples of the representation of (I) Hessenberg, (II) extended
Hessenberg and (III) rational Hessenberg matrices.

- D = diag(d).

Proof. Consider the matrix Gm = Lm −KmD, which is an (m+1)×m upper
Hessenberg matrix as both Lm and KmD are upper Hessenberg of size
(m+1)×m. The subdiagonal elements of Gm are hi+1,i = `i+1,i − diiki+1,i for
i ∈ {1, . . . ,m}. As dii = ξi = `i+1,i/ki+1,i if ki+1,i 6= 0, we have that hi+1,i = 0
if the pole ξi is not at infinity. For poles at infinity, hi+1,i = `i+1,i 6= 0 since
there is no breakdown. The matrix Gm has thus a zero subdiagonal element
whenever Km has a nonzero subdiagonal element and vice versa. We have
K†mLm = K†mGm+K†mKmD. As Km is full rank, K†mKm = Im and it remains
thus to examine the QR factorization of K†mGm to prove the Lemma.

We get,

K†mGm = R†KQ
∗
KQGRG =

[
R−1
K 0

]
Q∗KQG

[
RG
0

]
,

where R−1
K is well-defined since Km is of maximal rank. The unitary matrices

can be represented as a product of core transformations as,

QK = C̃∗i1 · · · C̃
∗
ik
, and QG = C̃j1 · · · C̃j` ,

where k+` = m, i1 < i2 < . . . < ik, j1 < j2 < . . . < j` and {i1, . . . , ik} ∪
{j1, . . . , jl} equal to {1, . . . ,m}. The Hermitian conjugates in QK are only
introduced for convenience. The product of both unitary matrices, Q̃ = Q∗KQG
is equal to:

Q̃ = Q∗KQG = C̃ik . . . C̃i1C̃j1 . . . C̃jl = C̃k1 · · · C̃kn−1 .
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We will prove next that the mutual ordering of C̃i and C̃i+1 in the factorization
of Q̃ is imposed by ξi+1 as specified in the formulation of the Lemma.

- If ξi+1 =∞, then i+1 ∈ {j1, . . . , jl} as it was designed to create a zero in
Gm. There are two possibilities, either C̃i appears in Q∗K or in QG. If it
is in Q∗K it is clearly to the left, if it is in QG, then j1 < . . . < jl ensures
that is located to the left of Ci+1.

- If ξi+1 6= ∞, then i+1 ∈ {i1, . . . , ik} and an analogous reasoning shows
that C̃i must be positioned right of C̃i+1.

There are two possibilities for the mth core transformation. If ξm 6=∞ then the
mth core transformation in Q̃ is located on the left of core transformation m− 1
and we can write Q̃ = CmQ̃1...m−1 with Q̃1...m−1 the unitary matrix formed by
the first m− 1 core transformations. This gives:

K†mGm =
[
R−1
K 0

]
CmQ̃1...m−1

[
RG
0

]
=
[
R̃ ⊗

]
Q̃1...m−1

[
RG
0

]
= Q1...m−1R.

In the second equality Cm is applied to columns m and m + 1 of R†K , this
preserves the upper triangular structure in the left m×m block. For the third
equality Q̃1...m−1 is transferred from the right of [R̃ ⊗] to the left. Since Q̃1...m−1
only affects the first m columns, both the upper triangularity in the left m×m
block and the mutual ordering of the core transformations are preserved.

Similarly, if ξm = ∞, the mth core transformation is located right from core
transformation m− 1 and we can write Q̃ = Q̃1...m−1Cm to get:

K†mGm =
[
R−1
K 0

]
Q̃1...m−1Cm

[
RG
0

]
=
[
R−1
K 0

]
Q̃1...m−1

[
R̃
⊗

]
= Q1...m−1R.

Let us further illustrate this structure with two simple examples.

Example 7.2.7. In the case of the projection on an extended Krylov subspace,
the vector d can be chosen as the zero vector according to Lemma 7.2.6 such
that we can choose Gm = Lm in the proof of Lemma 7.2.6. We end up with
a matrix in extended Hessenberg format because of this. For example, the
Galerkin projection K†mLm on an extended Krylov subspace with pole tuple
Ξext = (0, 0,∞, 0,∞) is of the form:
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The Galerkin projection K†mLm on the rational Krylov subspace with Ξ =
(ξ1, ξ2, ξ3, ξ4, ξ5), assuming all ξi 6=∞, is of the form:

K†5L5 = K†5G5 + diag(ξ1, . . . , ξ5) =
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Since there are no infinite poles in this example the matrix G5, as used in the
proof of Lemma 7.2.6, is an upper triangular matrix. As a consequence, all 5
core transformations are located in an ascending pattern that forms Q∗K . In the
second equality, the core transformation acting on columns 5 and 6 is merged
into the upper triangular matrix. This creates nonzero elements in the last
column, but the remaining core transformation can be transferred to the left
because the first columns are still in upper triangular form. The result is shown
on the second row. It is clear that the product of the 5×6 and 6×5 upper
triangular matrices result in a 5×5 matrix in upper triangular form.
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7.3 Filtering the rational Krylov method

To implicitly apply a rational filter in the rational Krylov method we can use the
pole swapping concept of the RQZ method. The filter mechanism is summarized
in Figure 7.3 for a small example. The algorithm starts from a proper rational
Krylov triplet (Vm+1, Lm,Km) with poles Ξ = (ξ1, . . . , ξm). The initial state of
the rational Krylov Hessenberg pencil is shown in pane I on the left. In pane II,
the first pole ξ1 is changed to a shift % by computing a unitary transformation
Q such that,

q1 = γ̌(Lm − %Km)(Lm−ξ1 Km)†e1 = γ̂(Lm − %Km)e1. (7.14)
The principle is the same as (3.2), the only difference is that the inverse is
replaced with the Moore-Penrose pseudoinverse (Lm−ξ1 Km)†.

It is well-known [46] that xLS = (Lm−ξ1 Km)†b is the least squares solution of
minimal norm ‖x‖2. As ‖γe1 − (Lm − ξ1Km)e1‖2 = 0 when γ = `11 − ξ1k11,
we conclude that,

(Lm−ξ1 Km)†e1 = γe1. (7.15)

Pane II of Figure 7.3 further shows how the shift is swapped to the last position
on the subdiagonal of (Lm,Km). The end result is displayed in pane III.
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Figure 7.3: RQZ-like procedure to change the first pole in a rational Krylov
Hessenberg pair to a new shift (Pane II) and move it to the last subdiagonal
position in the rational Krylov Hessenberg pair (Pane II-III).

The process shown in Figure 7.3 effectively updates,
(L̂m, K̂m) = Q∗(Lm,Km)Z,

in such a way that the pole tuple is changed to Ξ̂ = (ξ2, . . . , ξm, %). To maintain
the rational Krylov recurrence (7.8) the orthonormal basis is also updated as
V̂m+1 = Vm+1Q.

This does not change the span of Vm+1, i.e. R(V̂m+1) = R(Vm+1), but the
vectors are rearranged. The new starting vector is given by:

v̂ = V̂m+1 e1 = Vm+1 q1 = γ̂Vm+1(Lm−%Km)e1. (7.16)
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The rational Krylov recurrence (7.8) implies,

(A−%I)Vm+1 (Lm−ξ1Km) = (A−ξ1I)Vm+1 (Lm−%Km). (7.17)

Rearranging terms in (7.17) and combining this with (7.15) and (7.16), we see
that the new starting vector is given by:

v̂ = γ(A−ξ1 I)−1(A−% I) v. (7.18)

From the uniqueness of a rational Krylov triplet (7.8) stated in Theorem 7.2.4
in combination with Theorem 7.2.3 it follows that R(V̂m+1) = Krat

m+1(A, v̂, Ξ̂).

The filter operation is finalized by removing the last pole % from the subspace
which reduces the order of the rational Krylov recurrence by one. This means
that the trailing column and row of (L̂m, K̂m) are removed, as well as the last
vector of V̂m+1. The result is a proper rational Krylov triplet (V̂m, L̂m−1, K̂m−1)
of reduced order with poles Ξ = (ξ2, . . . , ξm) and start vector (7.18).

Repeating this process p times, we pictorially get the transformation:

Krat
m+1(A,v, (ξ1, . . . , ξm))

q(z)=
∏p

i=1
z−%i
z−ξi−−−−−−−−−−−−→

p shifted RQZ steps
Krat
m−p+1(A, q(A)v, (ξp+1, . . . , ξm)),

which is the rational Krylov equivalent of implicitly restarted Arnoldi discussed
in Section 7.1.

The implicit filter, and more broadly the rational QZ method, can also
be formulated and implemented in terms of elementary operations on core
transformations. This formulation is studied in [20].

7.4 Numerical experiments

A general approach for a restarted rational Krylov method is listed in Algorithm
3. This algorithm leaves open two major questions.

The first question is an approach to select the poles during the expansion phase.
The rational Krylov method allows for plenty of freedom in this respect. If one
has no a priori knowledge about the problem at hand, the extended Krylov
method can be a good alternative as it contains fewer parameters. This is
especially true during the first iterations, afterwards a motivated choice of poles
might be made based on information already available. If eigenvalues in a
certain region of interest are searched after, the poles can be chosen in such a
way that they form a rational filter which emphasizes the eigenvalues inside
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Algorithm 3 Restarted rational Krylov algorithm
Input: A ∈ CN×N , 0 6= v ∈ CN , maximal subspace dimension m, restart
length p, number of desired Ritz pairs l (p+ l ≤ m)
Output: {(ϑk,xk)}lk=1
1: Start:

a: Select poles Ξm
b: [Vm+1,Km, Lm]← RK(A,v,Ξm) . Algorithm 2.
c: Check convergence of l most desired Ritz pairs {(ϑk,xk)}lk=1

2: while not converged do
3: Select p shifts (%k)pk=1
4: for j = 1 . . . p do
5: [Vm−j+1,Km−j , Lm−j ]← RKQZ(Vm−j+2,Km−j+1, Lm−j+1, %j) .

Pole swapping filter.
6: end for
7: Select m− p new poles Ξm−p
8: Expand: [Vm+1,Km, Lm]← RK(A, V,K,L,Ξm−p) . Algorithm 2.
9: Check convergence of l most desired Ritz pairs {(ϑk,xk)}lk=1

10: end while

the region of interest, see [119] for a detailed description and a connection with
contour integration techniques. In Example 7.4.3 we will use this approach to
compute eigenvalues inside a contour. We will not go into further detail on the
problem of pole selection.

A second issue is how to pick the shifts for the filter polynomial. Different
practices have been proposed in the literature. They all attempt to create a
filter polynomial pf ∈ Pp that has the property that |pf (z)| is large on Ωwanted
and small on Ωunwanted, where Ωwanted and Ωunwanted are disjoint compact sets
in C. A first method is the use of exact shifts [111]. These are the p Ritz
values that are most distant from Ωwanted. Another option is to use shifts as
the zeros of Chebyshev polynomials on an ellipse [103, 111]. The use of Leja
shifts, proposed in [5, 6], is a third possibility.

Example 7.4.1. In the first experiment, we use Algorithm 3 to determine
the rightmost eigenvalues of a small test problem using extended and rational
Krylov subspaces and exact shifts for the filter. The exact shifts are the leftmost
Ritz values. We consider a matrix A ∈ R102×102 which is nonzero in the first
100 diagonal entries and in the last 2× 2 block only. The diagonal entries are
equal to −100,−99, . . . ,−1 and the 2×2 block leads to the complex conjugate
pair of eigenvalues ±25i. This construction mimics the physical situation in the
double-diffusive convection example [22,114]. The spectrum of A is shown in
Figure 7.4.
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Figure 7.4: Spectrum of the problem of size 102 in Example 7.4.1

The rightmost eigenvalues of this matrix are ±25i. Assume we can only store a
maximum of m=8 basis vectors in memory. For the restart phase we choose the
parameter p=6. The starting vector is [1 · · · 1]T and the iteration is repeated
until the complex conjugate pair of Ritz values has converged to an error smaller
than 10−8.

Figure 7.5 shows the convergence of the desired Ritz values for 3 different options
of poles Ξ. The error |λ1,2 − ϑ|/|λ1,2| is shown in function of the dimension of
the subspace. The left pane shows the result for Ξ1 = (0, 0, . . .), meaning that
only operations with A−1 are used and we have an extended Krylov subspace.
We observe that the convergence for the complex conjugate pair is slow and
5 restarts are required to meet the convergence criterion. The middle pane
shows the convergence for Ξ2 = (∞,∞, . . .), a polynomial Krylov subspace.
The convergence is much faster in this case and only 3 restarts are required
since the error is reduced by approximately two orders of magnitude after every
restart.

Considering the spectrum of A, this is what one would expect. The complex
conjugate pair of eigenvalues is situated at ±0.04i for A−1. They lie in the
cluster of eigenvalues near zero and are not well separated. This has a large
impact on the convergence of the method. In the spectrum of the original
matrix A the complex conjugate pair of eigenvalues is well separated. Hence
the more rapid convergence with Ξ2.

The right pane displays the result for a fully rational pole selection strategy.
The initial subspace is constructed using the rational Krylov pole tuple
(−70.5,−60.5, . . . ,−10.5) with poles along the negative real axis. As this
does not lead to significant convergence, the pole tuple is changed to
(22i,−22i, 16i,−16i, 10i,−10i) after the first restart. These poles along the
imaginary axes speed up the convergence and only two restarts are required
with this strategy.

Example 7.4.2. We study the benchmark problem from [33]. This problem
also stems from fluid dynamics and is a model for the flow in a unit-square
cavity with the lid moving from left to right. The Q2 — Q1 finite element
discretization with IFISS [35] resulted in a generalized eigenvalue problem
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Figure 7.5: Convergence behavior for the restarted rational Krylov iteration for
three different choices of Ξ. The convergence of the initial subspace is shown
with a solid line, convergence after restarting is indicated with a dashed line.
Left: extended, Middle: polynomial, Right: rational Krylov iteration.

(A,B) ∈ R9540×9540. The Reynolds number Re is 7800 for the pencil we
consider. The critical Reynolds number of this problem Rec is slightly less than
7929 [33, 36]. The pencil we consider is thus stable.

Both matrices A and B of the matrix pencil (A,B) are nonsingular such that we
can apply an extended Krylov method for the generalized eigenvalue problem.
This leads to operations with AB−1 for poles at ∞ and with BA−1 for poles
at 0. The LU factorization of A takes 142s in Matlab and 27s for B on an Intel
Xeon CPU E5-2697. It is feasible to factorize both A and B once, but repeating
this every few iterations is costly. Hence we prefer the extended Krylov method
over the rational Krylov method.

Figure 7.6 shows the spectrum of (A,B). The left pane shows 343 eigenvalues in
a region of the complex plane near the imaginary axis. The rightmost eigenvalues
of (A,B) appear in the complex conjugate pair λ1,2 = −0.005135± 2.698447i.
They are encircled in Figure 7.6. The right pane provides a closeup of the region
near λ1,2.

Table 7.1 lists the results for 3 different experiments with 3 different choices
of Ξext. These are cyclic pole tuples and the first column of Table 7.1 lists the
first cycle in Ξext. The ratio of poles at 0 decreases from the first to the third
row as is indicated in the second column which shows the ratio of operations
with poles at 0 with the total number of operations. The third column gives
the requested tolerance for convergence, the fourth the number of restarts and
the last column the residual of the rightmost Ritz values.
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Figure 7.6: The spectrum of the driven cavity problem. The encircled eigenvalues
are the rightmost eigenvalues.

The residual is in this case evaluated as,
‖Ax− λBx‖∞

‖A‖∞ + |λ|+ ‖B‖∞
.

In all three experiments, we create a subspace of dimension m=100, which is
then reduced with p=50 exact (leftmost) shifts during the restart. Since this is
a rather ‘difficult’ problem, the dimension of the subspace is kept comparatively
large. In order to retrieve the rightmost eigenvalues, the convergence criterion
is applied to the 12 rightmost Ritz values. If all 12 have a residual less than
the tolerance, the algorithm is halted. The tolerance is adjusted for each Ξext
in such a way that a good result is achieved within a reasonable number of
restarts.

The results indicate that retrieving the rightmost eigenvalues of this problem
up to good accuracy is feasible with a small number of restarts. The first two
choices of Ξext give a significantly faster convergence than the third. When
the tolerance in the third experiment is lowered to 10−8, the method fails to
converge in a reasonable number of restarts. We conclude that for this problem
it is beneficial to include operations with pole at 0.

The ARPACK [76] implementation of implicitly restarted Arnoldi, which is
available in Matlab as the command eigs, did not retrieve the rightmost
eigenvalues. This experiment demonstrates that the extended Krylov method
can sometimes be a suitable choice for finding a few eigenvalues of a matrix if
two conditions are satisfied. First, the convergence of the polynomial Krylov
method is too slow to find the eigenvalues of interest within a reasonable
number of restarts and with subspaces of small enough dimensions. Second,
the computational cost of computing an LU factorization of the matrix is too
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large to repeat every few iterations, which excludes the rational Krylov method
as a viable option, but it is small enough to do once. This second condition
leaves both the extended Krylov method and shift-and-invert Arnoldi as suitable
options since they both require only one matrix factorization.

Ξext
#BA−1op.

all op. tolerance restarts residual norm

∞ 0 0 0 0 · · · 4/5 3 · 10−10 12 9.3 · 10−12

∞ 0 0 0 · · · 3/4 8 · 10−10 9 2.7 · 10−11

∞ 0 0 · · · 2/3 1.5 · 10−8 6 1.4 · 10−8

Table 7.1: Summary of the results of Algorithm 3 on the cavity flow model
with m=100, p=50 and v = [1 · · · 1]T with three different options of Ξext. The
convergence is checked for the 12 rightmost Ritz values. The first column
specifies the first cycle of Ξext, the second column lists the fraction of poles at 0
in Ξext, the third column gives the requested tolerance, the fourth column the
number of restarts and the last column the residual norm upon convergence.

Example 7.4.3. In this example, we make a direct comparison between the
results obtained with Algorithm 3 and the explicit QZ step of [27] which is listed
in Algorithm 4. In line 2 of Algorithm 4 an orthogonal matrix Z ∈ Cm×m−1 is
computed for which the vector (γL∗m − δK∗m)q is in the nullspace of Z∗. This
condition is not restrictive and does not define Z uniquely. Two choices for Z
are used in our experiment: Z1 as computed by Algorithm 6.1 of [27] and Z2
computed from the full QR factorization

[
z Z2

]
[ α0 ] = (γL∗m − δK∗m)q.

Algorithm 4 Single shift, explicit QZ step for rational Krylov [27]
Input: Vm+1, Km, Lm, % = γ/δ
Output: V̌m, Ǩm−1, Ľm−1

1: Compute full QR factorization
[
Q̌ q

] [R
0

]
:= δLm − γKm

2: Compute Z satisfying q∗(γ̄Lm − δ̄Km)Z = 0
3: Ǩm−1 := Q̌∗KmZ

4: Ľm−1 := Q̌∗LmZ

5: V̌m = Vm+1Q̌

The matrix we consider is PDE900 from the MatrixMarket collection. This is a
real matrix of size 900×900. We are interested in determining the 9 eigenvalues
of this matrix inside the elliptical contour Γ, shown in Figure 7.7(a). For this
purpose, the contour is discretized with N = 110 points and both the poles Ξ
and filter shifts % are located at these discretization nodes. For more details on
this choice of rational filter and connections with contour integration methods,
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see [119]. This approach has a significant advantage over contour integration
techniques as it only requires the solution to a single linear system in every
iteration.
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(b) Spectrum, discretized contour and
Ritz values with implicit QZ

Figure 7.7: Problem setting and results with the implicit QZ method.

Given that all poles are on a contour in C, we are dealing with a proper rational
Krylov iteration. The tolerance is set to 10−7. After 3 outer iterations of adding
N poles and applying N filter shifts with the implicit QZ step, the problem
can be deflated. The iteration found an invariant subspace containing the Ritz
values of interest which are shown in Figure 7.7(b).

With the explicit QZ step of Algorithm 4, deflation does not occur or goes
unnoticed and after the maximum of 6 outer iterations the Ritz values obtained
with the choice of Z1 are shown in Figure 7.8(a) and in Figure 7.8(b) for Z2.
Clearly, the method did not converge and the explicit QZ step distorts the
information in the rational Krylov subspace.

This example demonstrates that the implicit QZ step is superior to the explicit
step. Not only is it computationally more efficient, it behaves more stable and
allows for accurate deflation monitoring.

Example 7.4.4. As our final numerical experiment, we revisit the two fluid
flow problems from Section 3.5.3. Instead of computing all eigenvalues we are
now only interested in determining if the problems are stable by computing
the rightmost eigenvalues. The settings of Algorithm 3 and results obtained
with the algorithm are summarized in Table 7.2. In both cases, we selected
poles along the imaginary axis, Ξ = (−20i,−18i, . . . , 18i, 20i), as we expect the
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Figure 7.8: Results with the explicit QZ method.

rightmost eigenvalue to be situated close to it. Exact shifts were used in the
filter step.

Table 7.2: Summary of the settings and results of the restarted rational Krylov
iteration. The columns list the maximal subspace dimension m, the restart
length p, the number of wanted Ritz values `, the tolerance tol, and the required
number of restarts to reach convergence.

Problem m p ` tol # restarts
Cavity flow 40 20 8 10−7 8
Obstacle flow 60 25 7 10−7 11

Figure 7.9 shows the rightmost part of the spectrum and the converged Ritz
values. As can be seen, the method successfully converged to the correct
eigenvalues within a reasonable number of restarts.

7.5 Conclusion

In this chapter we have applied the pole swapping technique of the rational QZ
method to implicitly filter a rational Krylov iteration. Lemma 7.2.5 derived a
small-scale Hessenberg pair which satisfies a Galerkin constraint with respect
to a subspace computed with the rational Krylov method. This shows how
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Figure 7.9: Rightmost part of the spectrum of the cavity flow (left) and obstacle
flow (right) problems. The eigenvalues () and Ritz values ( ) are shown.

eigenvalue approximations can be obtained using the rational Krylov method in
combination with the rational QZ method. We studied the Galerkin projection
on a rational Krylov subspace in Lemma 7.2.6 which revealed that it is of
rational Hessenberg form.

Numerical experiments tested the filter algorithm on four examples and
demonstrated the validity of the implicit approach both for the extended and
rational Krylov methods. We showed how extended Krylov can, in particular
cases, be an interesting method for the computation of the rightmost eigenvalues.
We compared our method with ARPACK and with the implicit restart method
proposed in [27], and showed that the new method can outperform these in
some scenarios.





Chapter 8

Conclusions and outlook

In this thesis we presented a class of eigenvalue methods that are founded on a
pole swapping strategy. We have shown that this change in perspective from
classical bulge chasing algorithms allows for more general shifting strategies
that lead us to more efficient eigenvalue algorithms.

We developed a sound theoretical understanding of pole swapping algorithms:
both their uniqueness and their convergence has been analyzed using rational
Krylov theory. This revealed that pole swapping methods implicitly perform
nested subspace iteration accelerated by rational functions, thereby significantly
generalizing the well-known polynomial-driven nested subspace iteration of
bulge chasing algorithms.

We adapted many recent developments in dense eigenvalue solvers to our novel
framework. These include tightly-packed, multishift and multipole batches and
an aggressive early deflation strategy. We obtained a high-performing algorithm
for the generalized eigenvalue problem which is rich in level-3 BLAS operations
and shown to be more accurate and faster than LAPACK [2].

A compact representation of Hessenberg, unitary Hessenberg pencils enabled us
to apply the pole swapping techniques for the solution of the standard eigenvalue
problem in an efficient manner. Numerical experiments showed promising results
with this approach to solve the standard eigenvalue problem.

We studied pole swapping algorithms for both symmetric and unsymmetric
tridiagonal pencils using non-unitary transformations. Optimality conditions
for the swapping transformations are provided, and uniqueness and convergence
results are extended to the tridiagonal case. Numerical experiments show
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promising results, but numerical stability remains challenging.

We used the connection between pole swapping algorithms and the rational
Krylov method in order to efficiently filter the iterative rational Krylov method.

8.1 Contributions

In this section we wish to highlight the main contributions of the different
chapters over existing results.

The contents of Chapter 3 have been submitted for publication [19]. The main
contributions are:

• Section 3.2 rigorously defined the notion of properness for Hessenberg
pairs. Lemma 3.2.2 gave four results for proper Hessenberg pairs that are
useful for their theoretical understanding.

• Section 3.3.2 reviewed the pole introduction and swapping operations on
Hessenberg pairs and provided a novel numerical algorithm to compute
the swapping transformations which is backward stable. An error analysis
is included in Appendix B.

• Section 3.4 proposed and tested a novel reduction algorithm to Hessenberg
form with prescribed pole tuple. The numerical test showed that a good
pole selection can induce premature middle deflations during the reduction
process.

• Section 3.5 proposed and tested the novel rational QZ algorithm for
Hessenberg pairs. Numerical tests showed that a good choice of poles
allows the pole swapping method to significantly outperform bulge chasing
methods.

• Section 3.6 reviewed and extended rational Krylov theory to prove an
implicit Q theorem for proper Hessenberg pencils. In Theorem 3.6.4 we
formally proved the shift invariance property for subspaces generated
from elementary rational matrices. Theorem 3.6.7 is a new result that
reveals the structure in rational Krylov subspaces generated from proper
Hessenberg pairs.

• Section 3.7 contains the main theoretical result of this thesis in the form
of Theorem 3.7.3 which essentially shows that a pole swapping method
implicitly performs nested subspace iteration accelerated by rational
functions.



CONTRIBUTIONS 169

• Section 3.8 provides an exactness result which shows that the rational QZ
method with perfect shift or pole leads to a deflation.

The majority of the content from Chapter 4 has been submitted for publication
in [18]. Section 4.4 contains results submitted for publication in [17]. The main
contributions are:

• Section 4.2 formally defined and studied proper block Hessenberg pairs.

• Theorem 4.2.8 showed the blocked structure of rational Krylov subspaces
generated by proper block Hessenberg pairs used to prove the block
implicit Q theorem in Theorem 4.3.3.

• Section 4.2.3 studied the pole placement problem for blocks of poles.

• Section 4.4 reviewed the swapping problem and proposed a numerical
scheme for the iterative refinement of pole swaps.

• Section 4.5 studied how an aggressive early deflation strategy can be
applied within the rational QZ method.

• The implementation of the algorithm in the Fortran package libRQZ.

The content of Chapter 5 is based on an article that is currently in preparation.
The main contributions are:

• An efficient storage scheme for Hessenberg, unitary Hessenberg pencils
which allows for a backward stable pole swapping algorithm.

• A comparison between our pole swapping method ZLAHPS and the bulge
chasing method ZLAHQR from LAPACK that reveals a reduction in CPU
time up to 37%.

The content of Chapter 6 is based on an article that is currently in preparation.
The main contributions are:

• A study of (nearly) optimally scaled, non-unitary pole swapping methods
for block tridiagonal pencils that preserve the tridiagonal form which
results in an O(n2) eigenvalue algorithm for tridiagonal pencils.

• Section 6.6.1 extends the uniqueness and convergence results of Chapter 3
to the non-unitary case.
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The content of Chapter 7 is based on [20]. The main contributions are:

• Lemma 7.2.5 presents a novel manner to compute the Ritz values in
rational Krylov as the eigenvalues of a Hessenberg pair.

• Lemma 7.2.6 analyzes the structure of the Galerkin projection on a rational
Krylov subspace.

• Sections 7.3 and 7.4 formulated and tested an implicit filter for rational
Krylov and showed that it can outperform existing methods for computing
a subset of eigenvalues.

8.2 Outlook

Scientific research is a never ending process. This thesis answered some questions
regarding pole swapping methods for eigenvalue problems but also opens up
potential new research directions. We list some ideas below.

• Throughout the thesis we mainly relied on pole selection strategies that
use eigenvalue approximations based on the top-left part of the matrix.
The numerical experiment in Section 3.4.2 gave an example where a
different pole selection strategy allowed us to construct a rational filter
which induces a middle deflation that splits the problem in two large
regions of eigenvalues. We believe that there is significant potential in
novel shifting and pole strategies which construct good rational filters
for the use in a pole swapping algorithm and that this requires further
research.

• We devised a way to incorporate the aggressive early deflation strategy
in the multishift, multipole rational QZ step. The computational cost of
aggressive early deflation is, although limited compared with a rational QZ
sweep, still significantly larger than classical deflation criteria. It would
be interesting to be able to predict a priori if aggressive early deflation
will find a significant number of eigenvalues, similar to [15].

• The idea of aggressive early deflation has also been investigated to perform
aggressive middle deflation in QR-type algorithms [81]. If this strategy
can be combined with rational filters that tend to induce middle deflations,
it can have the potential to drastically speed-up eigenvalue computations.

• With respect to software development, it would be interesting to develop
a parallel implementation of the multishift, multipole rational QZ method
with active bidirectional chasing.
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• An extension of the rational QR method based on the Hessenberg, unitary
Hessenberg pole swapping technique to multishift, multipole sweeps that
preserve the compact format.

• A way to perform aggressive early deflation on the compact Hessenberg,
unitary Hessenberg form.

• Investigating if the RLR or RT3 pole swapping algorithms for tridiagonal
pencils can be shown to be numerically stable for certain classes of problems
or certain shifting strategies.

• A study of balancing techniques with the goal of improving numerical
stability of the RLR and RT3 methods.

• An investigation of the adaptation of pole swapping techniques to
structured eigenproblems.





Appendix A

Core transformations and the
extended Hessenberg form

Section A.1 of this appendix provides an overview of three operations that can
be performed with core transformations as defined in Definition 2.3.2. These
operations are extensively used in the literature in the context of generalizations
of the QR method [123,129,130] and for the representation of rank-structured
matrices. An in-depth overview of core transformations and their use for the
eigenvalue problem can be found in [4]. Section A.2 introduces the concept of
extended Hessenberg matrix and pencils.

A.1 Three operations on core transformations

Three useful operations with core transformations are the transfer, fusion,
and turnover operations. The transfer of a core transformation from left to
right, or vice versa, through a nonsingular, upper triangular matrix is shown in
Figure A.1.

Elements of the upper triangular matrix that are altered during the transfer
from left to right are indicated with ⊗ in Figure A.1. The core transformation
on the left is different from the one on the right but its index is not changed and
the upper triangular shape is preserved. The computational complexity of a
transfer operation is clearly O(n), with n the dimension of the upper triangular
matrix. If multiple core transformations are present in a given pattern or shape,
for example the descending pattern of a Hessenberg matrix (Figure 2.4), then
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Figure A.1: Transfer of a core transformation from the left of an upper triangular
matrix to the right or vice versa.

the complete pattern of transformations can be transferred through the upper
triangular matrix. This operation preserves the mutual ordering of the core
transformations. An example is shown in Figure A.2.
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Figure A.2: The ordering of core transformations is preserved under the transfer
operation.

Two core transformations that act consecutively on the same rows or columns
can be multiplied and the result is again a core transformation. This is called a
fusion of core transformations and is depicted as:

�↪→� �� = �� .

The turnover of a V-shaped pattern of 3 core transformations is shown in
Figure A.3. This operation flips a factorization of 3 core transformations that
act on rows (i, i+1), (i+1, i+2), (i, i+1) into a factorization acting on rows
(i+1, i+2), (i, i+1), (i+1, i+2) or vice versa. A turnover is always possible in
the unitary case. This can be proven by considering two variants for factoring
a unitary 3×3 matrix [125]. The computational complexity of both the fusion
and turnover operation is O(1).

Finally, we remark that two core transformation Ci and Cj commute if |i−j| > 1.
As a consequence the mutual ordering in a pattern of core transformations is
not necessarily unique. We say that consecutive core transformations, Ci and
Ci+1, are in descending order if they are ordered as Ci Ci+1. If they are ordered
as Ci+1 Ci, we say that they are in ascending order. The Hessenberg form has
all core transformations in descending order and can be considered as a strictly
descending pattern.
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Figure A.3: Turnover of a V-shaped pattern of core transformations.

A.2 Extended Hessenberg matrices and pencils

The extended Hessenberg form is a relaxation of the Hessenberg form in the
sense that the sequence of core transformations is no longer required to be
strictly descending. Definition A.2.1 formalizes this and furthermore defines
the notion of an extended Hessenberg pencil.

Definition A.2.1. A matrix A ∈ Fn×n is called an extended Hessenberg matrix
if it has a QR decomposition of the form:

A = Cπ(1) . . . Cπ(n−1)R,

with π a permutation of (1, . . . , n− 1). A pair of matrices A,B ∈ Fn×n is called
an extended Hessenberg pair if the matrices have a QR decomposition:

A = QARA, B = QBRB , with: QAQB = Cπ(1) . . . Cπ(n−1),

where π is again a permutation of (1, . . . , n − 1). An extended Hessenberg
matrix and an extended Hessenberg pair are called proper if none of the core
transformations Ci are diagonal.

In order to clarify Definition A.2.1, Figure A.4 provides examples of a Hessenberg
matrix, an extended Hessenberg matrix, and an extended Hessenberg pencil.
As the ordering of core transformations is not unique if they do not act on
consecutive rows, there are multiple alternative orderings for the extended forms
in panes II and III.

We observe that the extended Hessenberg pencil, (C2C1C5RA, C4C3RB), from
pane III can be easily transformed to an equivalent extended Hessenberg pencil
with strictly descending patterns of core transformations in A and B. Strictly
descending means that the core transformations in both QA and QB satisfy the
ordering CiCj if j > i. The transformation to the strictly descending form can
be achieve without changing the upper triangular matrices RA or RB . For our
example, this can be done by a left multiplication with C∗2C∗4 which gives the
equivalent pencil (C1C

∗
4C5RA, C

∗
2C3RB).



176 CORE TRANSFORMATIONS AND THE EXTENDED HESSENBERG FORM

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��
��
��

I. Hessenberg

C1C2C3C4C5 R

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��
��
��
��

II. extended
Hessenberg

C4C1C3C2C5 R

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

��
��

��

, ��
��

××
×
×
×
×

×
×
×
×

×
×
×
×
×

×
×
×
×
×
×

III. extended Hessenberg pencil

C5C2C1 RA , C4C3 RB

Figure A.4: Examples of a Hessenberg matrix, extended Hessenberg matrix and
extended Hessenberg pencil.

Similarly, an extended Hessenberg matrix can also be transformed to an
equivalent extended Hessenberg pencil with strictly descending patterns of
core transformations. For example, the extended Hessenberg matrix in pane II
of Figure A.4 can be interpreted as the pencil (C4C1C3C2C5R, I) which can
be left multiplied with C∗3C

∗
4 to get the equivalent extended Hessenberg

pencil (C1C2C5R,C
∗
3C
∗
4 ). This has a strictly descending pattern of core

transformations on both matrices. Observe that the second matrix in the
equivalent matrix pair remains unitary in this case.

The previous two observations are true in general and are formalized in the
next lemma.

Lemma A.2.2. Any proper extended Hessenberg pencil, (QARA, QBRB), can
be transformed to an equivalent strictly descending extended Hessenberg pencil,
(Q̃ARA, Q̃BRB), where both Q̃A and Q̃B are unitary matrices that admit a
factorization in a strictly descending sequence of core transformations by left
multiplication with a unitary matrix. This does not alter the upper triangular
matrices RA and RB.

Proof. Trivial observation.

A direct corollary of Lemma A.2.2 is that any proper extended Hessenberg
matrix and pencil can be transformed to an equivalent proper Hessenberg pencil
according to Definition 3.2.1 with poles ξi ∈ {0,∞}. Properness of the resulting
Hessenberg pair follows from the property that the core transformations are
non-diagonal.

Starting from an extended Hessenberg matrix results in a Hessenberg pair
with a unitary matrix such that the method of Chapter 5 can be used. For
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extended Hessenberg pencils, we can use the method of Chapter 3 after the
transformation.

As shown in Lemma 7.2.6, the extended Hessenberg form is linked with the
Galerkin projection on an extended Krylov subspace.





Appendix B

Backward stable pole
swapping

In this appendix we present the error analysis for Lemma 3.3.2 and the results
of numerical experiments supporting the analysis.

B.1 Error analysis

The swapping operation is a unitary equivalence, and such transformations
generally are stable [55], but there is one thing we have to check. The rotation Q
is designed so that Q∗(BZ) has a zero in the (2, 1) position. This automatically
creates a zero in the (2, 1) position of Q∗(AZ) because the first columns of AZ
and BZ are scalar multiples. This is true in exact arithmetic. We just need
to check that in floating-point arithmetic the entry that is created in the (2, 1)
position of Q∗AZ is small enough that backward stability is not compromised
by setting it to zero. For this it suffices that its magnitude be no bigger than a
modest multiple of εm‖A‖. Here and throughout the analysis, the norm symbol
will denote the 2-norm.

The swapping operation begins with the computation of Z in (3.4) which is
uniquely defined by the vector

x =
[
α2b− β2a
β2α1 − α2β1

]
, (B.1)
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which is a right eigenvector of A− λB in (3.3) associated with ξ2. In floating-
point arithmetic we get

fl(x) =
[

α2b(1 + ε1)− β2a(1 + ε2)
β2α1(1 + ε3)− α2β1(1 + ε4)

]
, (B.2)

where each εi is the result of two roundoff errors and therefore satisfies |εi | ≤
2εm + O(ε2m). We will use the abbreviation |εi | . εm to mean that |εi | is no
bigger than a modest constant times εm.

The next step is to actually compute Z, which has x/‖x‖ as its first column.
In practice we do this using fl(x) and make additional roundoff errors in the
computation. We get Z̃ = fl(Z) satisfying

Z̃e1 = x̃ = γ̃−1
[

fl(x1)(1 + ε5)
fl(x2)(1 + ε6)

]
. (B.3)

Here γ̃ = ‖fl(x)‖. A tiny relative error is made during this norm computation,
and another tiny error is made when fl(x1) is divided by γ̃. These are the causes
of the error ε5, and we have |ε5 | . εm. Similarly |ε6 | . εm.

The vector x̃ defined by (B.3) is our computed (and normalized) version of a
right eigenvector associated with eigenvalue ξ2. For later use we wish to show
that x̃ is exactly an eigenvector of a slightly perturbed pencil. Thus we seek
perturbed quantities α̃1, α̃2, β̃1, and β̃2 such that(

β̃2

[
α̃1 a

α̃2

]
− α̃2

[
β̃1 b

β̃2

])[
x̃1
x̃2

]
=
[

0
0

]
. (B.4)

Notice that we are not going to map back any of the error onto a or b. This
equation is equivalent to

(β̃2α̃1 − α̃2β̃1)x̃1 + (β̃2a− α̃2b)x̃2 = 0.

Filling in the values of x̃1 and x̃2 from (B.3) and (B.2), we can check that this
equation holds if we make the assignments

α̃1 = α1
(1 + ε3)(1 + ε6)
(1 + ε2)(1 + ε5) , α̃2 = α2(1 + ε1)(1 + ε5),

β̃1 = β1
(1 + ε4)(1 + ε6)
(1 + ε1)(1 + ε5) , β̃2 = β2(1 + ε2)(1 + ε5).

Clearly | α̃i − αi | . εm|αi | and | β̃i − βi | . εm|βi | for i = 1, 2. Equation (B.4)
can be written more compactly as

β̃2Ãx̃ = α̃2B̃x̃. (B.5)
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Thus x̃ is an eigenvector of the perturbed pencil Ã − λB̃ associated with
eigenvalue ξ̃2 = α̃2/β̃2. We also write

Ã = A+ δA and B̃ = B + δB1, (B.6)

with δA and δB1 diagonal matrices satisfying ‖δA‖ . εm‖A‖ and ‖δB1 ‖ .
εm‖B ‖.

Finally we compute Q. In exact arithmetic Q is constructed so that Q∗(BZe1) =
γ e1, for some γ, so the first column of Q must be proportional to BZe1. In
practice, instead of BZe1 we use

y̌ = fl(BZ̃e1) = fl(Bx̃) = γ̃−1
[
β1x̃1(1 + ε′1) + bx̃2(1 + ε′2)

β2x̃2(1 + ε′3)

]
,

where |ε′i | . εm for i = 1, 2, 3. The computed version of Q is Q̃ = fl(Q)
satisfying

Q̃e1 = ζ̌−1
[
y̌1(1 + ε′4)
y̌2(1 + ε′5)

]
,

where ζ̌ = ‖ y̌‖, and ε′4 and ε′5 are due to the tiny roundoff errors in the
calculation.

For our analysis we need to establish that there is a slightly perturbed matrix

B̂ = B + δB2 =
[
β̂1 b

β̂2

]
such that Q̃∗B̂Z̃ has an exact zero in the (2, 1) position. This means that
ỹ = Q̃e1 is exactly proportional to B̂Z̃e1 = B̂x̃. It is easy to check that the
choice

β̂1 = β1
(1 + ε′1)
(1 + ε′2) , β̂2 = β2

(1 + ε′3)(1 + ε′5)
(1 + ε′2)(1 + ε′4)

does the trick. Clearly | β̂1 − β1 | . εm |β1 | and | β̂2 − β2 | . εm |β2 |, and δB2
is a diagonal matrix satisfying ‖δB2 ‖ . εm ‖B ‖.

Our final computed results are fl(Q̃∗AZ̃) and fl(Q̃∗BZ̃). We have to show that
the (2, 1) entries of these matrices are small enough that we can set them to zero
without compromising backward stability. The “B” part is routine. Focusing
on the (2, 1) entry, we have

eT2 fl(Q̃∗BZ̃)e1 = eT2 Q̃
∗BZ̃e1 + eT2 E1e1,

where E1 is the matrix of roundoff errors incurred in multiplying the three
matrices together and satisfies ‖E1 ‖ . εm ‖Q̃‖ ‖B ‖ ‖ Z̃ ‖, i.e. ‖E1 ‖ . εm ‖B ‖.
The remaining term is

eT2 Q̃
∗BZ̃e1 = eT2 Q̃

∗B̂Z̃e1 − eT2 Q̃
∗δB2Z̃e1.
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The first term on the right-hand side is exactly zero by construction. The
second is bounded above by ‖δB2 ‖ . εm ‖B ‖.

The “A” part is more delicate. We have

eT2 fl(Q̃∗AZ̃)e1 = eT2 Q̃
∗AZ̃e1 + eT2 E2e1,

where E2 is the matrix of roundoff errors incurred in multiplying the three
matrices together and satisfies ‖E2 ‖ . e1 ‖A‖. The remaining term is

eT2 Q̃
∗AZ̃e1 = eT2 Q̃

∗ÃZ̃e1 − eT2 Q̃
∗δAZ̃e1.

The second term on the right-hand side is bounded above by ‖δA‖ . εm ‖A‖,
so now we can just focus on the other term. Here we make use of (B.5), which
can be written as ÃZ̃e1 = (α̃2/β̃2)B̃Z̃e1.

eT2 Q̃
∗ÃZ̃e1 = α̃2

β̃2
eT2 Q̃

∗B̃Z̃e1 = α̃2

β̃2
eT2 Q̃

∗B̂Z̃e1 + α̃2

β̃2
eT2 Q̃

∗(δB1 − δB2)Z̃e1.

The term containing B̂ is zero by construction, so now we just need to concentrate
on the other term. Let δB = δB1 − δB2. From the definitions of δB1 and δB2
we see that

δB =
[
ε′′1 β1 0

0 ε′′2 β2

]
,

where |ε′′i | . εm for i = 1, 2. Moreover α̃2

β̃2
= α2

β2
(1 + ε′′3) for some tiny ε′′3 . We

also use our assumption |ξ1 | ≥ |ξ2 | to deduce that |β1α2/β2 | ≤ |α1 |. Thus

|(α̃2/β̃2)δB | = (1 + ε′′3)
[
|ε′′1 β1α2/β2 |

|ε′′2 α2 |

]
≤ (1 + ε′′3)

[
|ε′′1 α1 |

|ε′′2 α2 |

]
,

so
‖(α̃2/β̃2)δB ‖ . εm ‖A‖.

We conclude that our one remaining term, which is (α̃2/β̃2)eT2 Q̃∗(δB)Z̃e1,
satisfies

|(α̃2/β̃2)eT2 Q̃∗(δB)Z̃e1 | . εm ‖A‖.

We have demonstrated that

|eT2 fl(Q̃∗AZ̃)e1 | . εm ‖A‖ and |eT2 fl(Q̃∗BZ̃)e1 | . εm ‖B ‖,

so we can set these numbers to zero without compromising backward stability.
The . symbols hide constants, but these constants are not too large due to the
small total number of operations required by the swap.
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B.2 Numerical experiments

We generated sixty-four million random 2× 2 upper triangular pencils where
the six nonzero entries are approximately logarithmically distributed and vary
in magnitude from 10−12 up to 1012. For all pencils we computed the swapping
transformations using three different algorithms: our method, the method of
Van Dooren [122], and a method that solves the generalized Sylvester equation
explicitly to determine Q and Z [60]. The computations were done in double
precision arithmetic, for which εm ≈ 10−16. Table B.1 shows that our method
always produces residuals |a21 |/‖A‖ and |b21 |/‖B ‖ that are under 10−15, and
more than 99.7% of them are under 10−16. In contrast, the Van Dooren and
Sylvester methods sometimes produce much larger residuals, approaching 100

in a few cases. If we change the criterion and consider the residuals |a21 |/∆
and |b21 |/∆, where ∆ = max{‖A‖, ‖B ‖}, then all methods perform well, as
Table B.2 shows. By this criterion all residuals are under 10−15. Our method
and Van Dooren’s method perform about equally well, and the Sylvester method
is almost as good. We conclude that if ‖A‖ and ‖B ‖ are roughly the same, it
doesn’t matter which method is used. However, in problems for which there can
be large differences in magnitude between ‖A‖ and ‖B ‖, our method is better.

Table B.1: Distribution of errors | â21 |/‖A‖ and | b̂21 |/‖B‖ for our method, Van
Dooren’s method, and the Sylvester method.

| x̂21 |/‖X‖
[

0, 10−16
] (

10−16, 10−15
](

10−15, 10−10
](

10−10, 10−5
] (

10−5, 100
]

Our method A 99.71% 0.29% 0% 0% 0%
B 99.85% 0.15% 0% 0% 0%

Van Dooren A 98.19% 0.55% 0.93% 0.27% 0.06%
B 98.19% 0.55% 0.93% 0.27% 0.06%

Sylvester A 93.34% 5.88% 0.57% 0.17% 0.04%
B 93.34% 5.88% 0.57% 0.17% 0.04%
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Table B.2: Distribution of errors | â21 |/∆ and | b̂21 |/∆ for our method, Van
Dooren’s method, and the Sylvester method.

| x̂21 |/∆
[

0, 10−16
] (

10−16, 10−15
](

10−15, 10−10
](

10−10, 10−5
] (

10−5, 100
]

Our method A 99.87% 0.13% 0% 0% 0%
B 99.93% 0.07% 0% 0% 0%

Van Dooren A 99.94% 0.06% 0% 0% 0%
B 99.94% 0.06% 0% 0% 0%

Sylvester A 97.26% 2.74% 0% 0% 0%
B 97.26% 2.74% 0% 0% 0%



Bibliography

[1] Web of Science webpage. https://apps.webofknowledge.com. Accessed:
February 9, 2019.

[2] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., and Sorensen, D. LAPACK Users’ Guide, third ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

[3] Arnoldi, W. E. The principle of minimized iteration in the solution of
the matrix eigenvalue problem. Quart. Appl. Math. 9 (1951), 17–29.

[4] Aurentz, J. L., Mach, T., Robol, L., Vandebril, R., and Watkins,
D. S. Core-Chasing Algorithms for the Eigenvalue Problem. Fundamentals
of Algorithms. Society for Industrial and Applied Mathematics, 2018.

[5] Baglama, J., Calvetti, D., and Reichel, L. IRBL: an implicitly
restarted block-Lanczos method for large-scale Hermitian eigenproblems.
SIAM J. Sci. Comput. 24, 5 (2003), 1650–1677.

[6] Baglama, J., and Reichel, L. An implicitly restarted block Lanczos
bidiagonalization method using Leja shifts. BIT 53, 2 (2013), 285–310.

[7] Barkouki, H., Bentbib, A., and Jbilou, K. A matrix rational
Lanczos method for model reduction in large-scale first- and second-order
dynamical systems. Numer. Linear Algebra Appl. 24, 1 (2016), e2077.

[8] Bart, H., Gohberg, I., Kaashoek, M. A., and Van Dooren, P.
Factorizations of transfer functions. SIAM J. Control 18, 6 (1980), 675–
696.

[9] Beckermann, B., Güttel, S., and Vandebril, R. On the convergence
of rational Ritz values. SIAM J. Matrix Anal. Appl. 31, 4 (2010), 1740–
1774.

185

https://apps.webofknowledge.com


186 BIBLIOGRAPHY

[10] Berljafa, M. Rational Krylov Decompositions: Theory and Applications.
PhD thesis, The University of Manchester, 2017.

[11] Berljafa, M., and Güttel, S. Generalized rational Krylov
decompositions with an application to rational approximation. SIAM J.
Matrix Anal. Appl. 36, 2 (2015), 894–916.

[12] Berljafa, M., and Güttel, S. Parallelization of the rational Arnoldi
algorithm. SIAM J. Sci. Comput. 39, 5 (2017), S197–S221.

[13] Boisvert, R. F., Pozo, R., Remington, K., Barrett, R. F., and
Dongarra, J. J. Matrix market: A web resource for test matrix
collections. In Proceedings of the IFIP TC2/WG2.5 Working Conference
on Quality of Numerical Software: Assessment and Enhancement (London,
UK, 1997), Chapman & Hall, Ltd., pp. 125–137.

[14] Braman, K., Byers, R., and Mathias, R. The multishift QR
algorithm. Part I: maintaining well-focused shifts and level 3 performance.
SIAM J. Matrix Anal. Appl. 23, 4 (2002), 929–947.

[15] Braman, K., Byers, R., and Mathias, R. The multishift QR
algorithm. Part II: aggressive early deflation. SIAM J. Matrix Anal.
Appl. 23, 4 (2002), 948–973.

[16] Camps, D., Mach, T., Vandebril, R., and Watkins, D. S. On
pole-swapping algorithms for the eigenvalue problem. Submitted.

[17] Camps, D., Mastronardi, N., Vandebril, R., and Van Dooren, P.
Swapping 2× 2 blocks in the Schur and generalized Schur form. Accepted
for publication in J. Comput. Appl. Math.

[18] Camps, D., Meerbergen, K., and Vandebril, R. A multishift,
multipole rational QZ method with aggressive early deflation. Submitted.

[19] Camps, D., Meerbergen, K., and Vandebril, R. A rational QZ
method. SIAM J. Matrix Anal. Appl. 40, 3 (2019), 943–972.

[20] Camps, D., Meerbergen, K., and Vandebril, R. An implicit filter
for rational Krylov using core transformations. Linear Algebra Appl. 561,
January (2019), 113–140.

[21] Cauchy, A. L. Sur l’équation à l’aide de laquelle on determine les
inégalités séculaires des mouvements des planètes. Exer. de math. 2, 8
(1829), 95–174.

[22] Cliffe, K. A., Garratt, T. J., and Spence, A. Eigenvalues of the
discretized Navier-Stokes equation with application to the detection of
Hopf bifurcations. Adv. Comput. Math. 1, 3 (1993), 337–356.



BIBLIOGRAPHY 187

[23] Cullum, J. K., and Willoughby, R. A. Computing eigenvalues of very
large symmetric matrices – An implementation of a Lanczos algorithm
with no reorthogonalization. Journal of Computational Physics 44, 2
(1981), 329 – 358.

[24] Cullum, J. K., and Willoughby, R. A. Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1 Theory. Birhäuser, Boston,
1985.

[25] Dackland, K., and Kågström, B. Blocked algorithms and software
for reduction of a regular matrix pair to generalized Schur form. ACM
Trans. Math. Softw. 25, 4 (1999), 425–454.

[26] Davies, P. I., Higham, N. J., and Tisseur, F. Analysis of the
Cholesky method with iterative refinement for solving the symmetric
definite generalized eigenproblem. SIAM J. Matrix Anal. Appl. 23, 2
(2001), 472–493.

[27] De Samblanx, G., Meerbergen, K., and Bultheel, A. The implicit
application of a rational filter in the RKS method. BIT Numer. Math.
37, 4 (1997), 925–947.

[28] Dongarra, J. J., Sorensen, D. C., and Hammarling, S. J. Block
reduction of matrices to condensed forms for eigenvalue computations.
In Parallel Algorithms for Numerical Linear Algebra, Henk A. van der
Vorst and Paul van Dooren, Ed., vol. 1 of Advances in Parallel Computing.
North-Holland, 1990, pp. 215 – 227.

[29] Druskin, V., and Knizhnerman, L. Extended Krylov subspaces:
approximation of the matrix square root and related functions. SIAM J.
Matrix Anal. Appl. 19, 3 (1998), 755–771.

[30] Druskin, V., Knizhnerman, L., and Simoncini, V. Analysis of the
rational Krylov subspace and ADI methods for solving the Lyapunov
equation. SIAM J. Numer. Anal. 49, 5 (2011), 1875–1898.

[31] Druskin, V., Knizhnerman, L., and Zaslavsky, M. Solution of
large scale evolutionary problems using rational Krylov subspaces with
optimized shifts. SIAM J. Sci. Comput. 31, 5 (2009), 3760–3780.

[32] Druskin, V., Simoncini, V., and Zaslavsky, V. Adaptive tangential
interpolation in rational Krylov subspaces for MIMO dynamical systems.
SIAM J. Matrix Anal. Appl. 35, 2 (2014), 476–498.

[33] Elman, H., Meerbergen, K., Spence, A., and Wu, M.
Lyapunov inverse iteration for identifying Hopf bifurcations in models of
incompressible flow. SIAM J. Sci. Comput. 34, 3 (2012), 1584–1606.



188 BIBLIOGRAPHY

[34] Elman, H., Ramage, A., and Silvester, D. Algorithm 866: IFISS,
a Matlab toolbox for modelling incompressible flow. ACM Trans. Math.
Softw. 33 (2007), 2–14.

[35] Elman, H., Ramage, A., and Silvester, D. IFISS: A computational
laboratory for investigating incompressible flow problems. SIAM Rev. 56
(2014), 261–273.

[36] Elman, H. C., and Wu, M. Lyapunov inverse iteration for computing
a rightmost eigenvalues of large generalized eigenvalue problems. SIAM
J. Matrix Anal. Appl. 34, 4 (2013), 1685–1707.

[37] Emami-Naeini, A., and Van Dooren, P. Computation of zeros of
linear multivariable systems. Automatica 18, 4 (1982), 415–430.

[38] Fasino, D. Rational Krylov matrices and QR steps on Hermitian diagonal-
plus-semiseparable matrices. Numer. Linear Algebr. with Appl. 12, 8
(2005), 743–754.

[39] Francis, J. G. F. The QR transformation, a unitary analogue to the
LR transformation—Part 1. Comput. J. 4, 3 (1961), 265–271.

[40] Francis, J. G. F. The QR transformation—Part 2. Comput. J. 4, 4
(1962), 332–345.

[41] Gantmacher, F. R. The Theory of Matrices, I, II. Chelsea Publishing
Company., 1959.

[42] Garvey, S. D., Tisseur, F., Friswell, M. I., Penny, J. E. T., and
Prells, U. Simultaneous tridiagonalization of two symmetric matrices.
Int. J. Numer. Meth. Eng. 57, 12 (2003), 1643–1660.

[43] Giraud, L., Langou, J., and Rozloznik, M. The loss of orthogonality
in the Gram-Schmidt orthogonalization process. Comput. Math. Appl. 50,
7 (2005), 1069 – 1075.

[44] Gockler, T. Rational Krylov subspace methods for φ-functions in
exponential integrators. PhD thesis, 2014.

[45] Golub, G., and Uhlig, F. The QR algorithm: 50 years later its genesis
by John Francis and Vera Kublanovskaya and subsequent developments.
IMA J. Numer. Anal. 29, 3 (2009), 467–485.

[46] Golub, G. H., and Van Loan, C. F. Matrix Computations, 4th ed.
2012.

[47] Grimme, E., Gallivan, K., and Van Dooren, P. A rational Lanczos
algorithm for model reduction. Numer. Algorithms 12 (1998), 33–63.



BIBLIOGRAPHY 189

[48] Grimme, E. J., Sorensen, D. C., and Van Dooren, P. Model
reduction of state space systems via an implicitly restarted Lanczos
method. Numer. Algorithms 12 (1996), 1–31.

[49] Gugercin, S., Antoulas, A. C., and Beattie, C. H2 model reduction
for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30,
2 (2008), 609–638.

[50] Gutknecht, M. H., and Parlett, B. N. From qd to LR, or, how
were the qd and LR algorithms discovered? IMA J. Numer. Anal. 31, 3
(2011), 741–754.

[51] Güttel, S. Rational Krylov approximation of matrix functions:
Numerical methods and optimal pole selection. GAMM-Mitteilungen
36, 1 (2013), 8–31.

[52] Güttel, S., Van Beeumen, R., Meerbergen, K., and Michiels, W.
NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue
problems. SIAM J. Sci. Comput. 36, 6 (2014), A2842–A2864.

[53] Hawkins, T. Cauchy and the spectral theory of matrices. Historia
Mathematica 2, 1 (1975), 1 – 29.

[54] He, C., Laub, A. J., and Mehrmann, V. Placing plenty of poles is
pretty preposterous. In Preprint SPC 95-17, Forschergruppe ‘Scientific
Parallel Computing’, Fak. f. Mathematik, TU Chemnitz-Zwickau (1995).

[55] Higham, N. J. Accuracy and Stability of Numerical Algorithms, 2nd ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002.

[56] Hilbert, D. Grundzüge einer allgemeinen theorie der linearen
integralgleichungen. In Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1904),
Vandenhoeck & Ruprecht, pp. 49–91.

[57] Kågström, B. A direct method for reordering eigenvalues in the
generalized real Schur form of a regular matrix pair (A,B). In Linear
Algebra for Large Scale and Real-Time Applications, M. S. Moonen, G. H.
Golub, and B. L. R. De Moor, Eds. Springer Netherlands, Dordrecht,
1993, pp. 195–218.

[58] Kågström, B., and Kressner, D. Multishift variants of the QZ
algorithm with aggressive early deflation. SIAM J. Matrix Anal. Appl.
29, 1 (2007), 199–227.



190 BIBLIOGRAPHY

[59] Kågström, B., Kressner, D., Quintana-Ortí, E., and Quintana-
Ortí, G. Blocked algorithms for the reduction to Hessenberg-triangular
form revisited. BIT Numerical Mathematics 48, 3 (2008), 563–584.

[60] Kågström, B., and Poromaa, P. Computing eigenspaces with specified
eigenvalues of a regular matrix pair (A, B) and condition estimation:
theory, algorithms and software. Numer. Algorithms 12 (1996), 369–407.

[61] Karlsson, L. Scheduling of parallel matrix computations and data layout
conversion for HPC and Multi-Core Architectures. PhD thesis, Umeå
UniversityUmeå University, Department of Computing Science, High
Performance Compting Center North (HPC2N), 2011.

[62] Kaufman, L. Some thoughts on the QZ algorithm for solving the
generalized eigenvalue problem. ACM Trans. Math. Softw. 3, l (1977),
65–75.

[63] Kautsky, J., Nichols, N. K., and Van Dooren, P. Robust pole
assignment in linear state feedback. Int. J. Control 41, 5 (1985), 1129–
1155.

[64] Knizhnerman, L., and Simoncini, V. A new investigation of the
extended Krylov subspace method for matrix function evaluations. Numer.
Linear Algebr. with Appl. 17, June 2009 (2009), 615–638.

[65] Korvink, J. G., and Rudnyi, E. B. Oberwolfach benchmark collection.
In Dimension Reduction of Large-Scale Systems (Berlin, Heidelberg, 2005),
P. Benner, D. C. Sorensen, and V. Mehrmann, Eds., Springer Berlin
Heidelberg, pp. 311–315.

[66] Kressner, D. Numerical Methods for General and Structured Eigenvalue
Problems, vol. 46. Springer-Verlag Berlin Heidelberg, 2005.

[67] Kressner, D. On the use of larger bulges in the QR algorithm. Electron.
Trans. Numer. Anal. 20 (2005), 50–63.

[68] Krylov, A. N. On the numerical solution of the equation by which in
technical questions frequencies of small oscillations of material systems are
determined. Izv. AN SSSR (News Acad. Sci. USSR) 7, 4 (1931), 491–539.
(In Russian.).

[69] Kublanovskaya, V. N. On some algorithms for the solution of the
complete eigenvalue problem. USSR Comp. Math. Phys. 3 (1961), 637–657.
(In Russian.).

[70] Kuijlaars, A. Which eigenvalues are found by the Lanczos method?
SIAM J. Matrix Anal. Appl. 22, 1 (2000), 306–321.



BIBLIOGRAPHY 191

[71] Kuijlaars, A. Convergence analysis of Krylov subspace iterations with
methods from potential theory. SIAM Rev. 48, 1 (2006), 3–40.

[72] Lancaster, P., and Rodman, L. Algebraic Riccati Equations. Oxford
science publications. Clarendon Press, 1995.

[73] Lanczos, C. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Natl. Bur.
Stand. (1934). 45, 4 (1950), 255.

[74] Lehoucq, R. B., and Meerbergen, K. Using generalized Cayley
transformations within an inexact rational Krylov sequence method. SIAM
J. Matrix Anal. Appl. 20, 1 (1998), 131–148.

[75] Lehoucq, R. B., and Sorensen, D. C. Deflation techniques for an
implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17, 4
(1996), 789–821.

[76] Lehoucq, R. B., Sorensen, D. C., and Yang, C. ARPACK Users’
Guide: Solution of Large Scale Eigenvalue Problems with Implicitly
Restarted Arnoldi Methods. 1997.

[77] Lemonnier, D., and Van Dooren, P. Balancing Regular Matrix
Pencils. SIAM J. Matrix Anal. Appl. 28, 1 (2006), 253–263.

[78] Liesen, J., and Strakos, Z. Krylov Subspace Methods: Principles and
Analysis. Oxford University Press, 2013.

[79] Mach, T., Barel, M. V., and Vandebril, R. Inverse eigenvalue
problems for extended Hessenberg and extended tridiagonal matrices.
Journal of Computational and Applied Mathematics 272 (2014), 377 –
398.

[80] Mach, T., and Vandebril, R. On deflations in extended QR algorithms.
SIAM J. Matrix Anal. Appl. 35, 2 (2014), 559–579.

[81] Mach, T., and Vandebril, R. On Deflations in Extended QR
Algorithms. SIAM J. Matrix Anal. Appl. 35, 2 (2014), 559–579.

[82] Mastronardi, N., and Van Dooren, P. The $QR$ Steps with Perfect
Shifts. SIAM J. Matrix Anal. Appl. 39, 4 (2018), 1591–1615.

[83] Moler, C. B., and Stewart, G. W. An algorithm for generalized
matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 2 (1973), 1–52.

[84] Morgan, R. B. On restarting the Arnoldi method for large nonsymmetric
eigenvalue problems. Math. Comput. 65, 215 (1996), 1213–1231.



192 BIBLIOGRAPHY

[85] Morgan, R. B., and Zeng, M. Harmonic projection methods for large
non-symmetric eigenvalue problems. Numer. Linear Algebr. with Appl. 5,
1 (1998), 33–55.

[86] Paige, C. C. The computation of eigenvalues and eigenvectors of very
large sparse matrices. PhD thesis, University of London, UK, 1971.

[87] Paige, C. C. Computational Variants of the Lanczos Method for the
Eigenproblem. IMA Journal of Applied Mathematics 10, 3 (1972), 373–381.

[88] Parlett, B. The QR algorithm. Comput. Sci. Eng. 2, 1 (2000), 38–42.

[89] Parlett, B. N. Symmetric matrix pencils. J. Comput. Appl. Mat. 38,
1–3 (1991), 373–385.

[90] Polizzi, E. Density-matrix-based algorithm for solving eigenvalue
problems. Phys. Rev. B 79 (2009), 115112.

[91] Quintana-Ortí, G., and van de Geijn, R. Improving the performance
of reduction to Hessenberg form. ACM Trans. Math. Softw. 32, 2 (2006),
180–194.

[92] Ruhe, A. Rational Krylov sequence methods for eigenvalue computation.
Linear Algebra Appl. 58, 1984 (1984), 391–405.

[93] Ruhe, A. Rational Krylov algorithms for nonsymmetric eigenvalue
problems. In Recent Advances in Iterative Methods (New York, NY, 1994),
G. Golub, M. Luskin, and A. Greenbaum, Eds., Springer New York,
pp. 149–164.

[94] Ruhe, A. Rational Krylov algorithms for nonsymmetric eigenvalue
problems. II. matrix pairs. Linear Algebra Appl. 197–198 (1994), 283 –
295.

[95] Ruhe, A. The rational Krylov algorithm for nonsymmetric eigenvalue
problems. III: Complex shifts for real matrices. BIT Numer. Math. 34, 1
(1994), 165–176.

[96] Ruhe, A. Rational Krylov: A practical algorithm for large sparse
nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 5 (1998), 1535–
1551.

[97] Ruhe, A. The rational Krylov algorithm for nonlinear matrix eigenvalue
problems. J. Math. Sci. 114, 6 (2003), 1854–1856.

[98] Rutishauser, H. Anwendungen des quotienten–differenzen–algorithmus.
Z. Angew. Math. Phys. 5 (1954), 496–508.



BIBLIOGRAPHY 193

[99] Rutishauser, H. Der quotienten–differenzen–algorithmus. Z. Angew.
Math. Phys. 5 (1954), 233–251.

[100] Rutishauser, H. Ein infinitesimales analogon zum quotien-
ten–differenzen–algorithmus. Arch. Math. 5 (1954), 132–137.

[101] Rutishauser, H. Solution of eigenvalue problems with the LR-
transformation. Nat. Bur. Standards Appl. Math 49 (1958), 47–81.

[102] Saad, Y. Variations on Arnoldi’s method for computing eigenelements
of large unsymmetric matrices. Linear Algebra Appl. 34 (1980), 269–295.

[103] Saad, Y. Chebyshev acceleration techniques for solving nonsymmetric
eigenvalue problems. Math. Comput. 42, 166 (1984), 567–588.

[104] Saad, Y. Numerical solution of large nonsymmetric eigenvalue problems.
Comput. Phys. Commun. 53, 1-3 (1989), 71–90.

[105] Saad, Y. Numerical Methods for Large Eigenvalue Problems. Manchester
University Press, 1992.

[106] Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[107] Sakurai, T., and Sugiura, H. A projection method for generalized
eigenvalue problems using numerical integration. J. Comput. Appl. Math.
159, 1 (2003), 119 – 128.

[108] Sidje, R. B. On the simultaneous tridiagonalization of two symmetric
matrices. Numer. Math. 118, 3 (2011), 549–566.

[109] Simoncini, V. Analysis of the rational Krylov subspace projection method
for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl.
37, 4 (2016), 1655–1674.

[110] Skoogh, D. A parallel rational Krylov algorithm for eigenvalue
computations. In Applied Parallel Computing Large Scale Scientific and
Industrial Problems (Berlin, Heidelberg, 1998), B. Kågström, J. Dongarra,
E. Elmroth, and J. Waśniewski, Eds., Springer Berlin Heidelberg, pp. 521–
526.

[111] Sorensen, D. C. Implicit application of polynomial filters in a k-step
Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 1 (1992), 357–385.

[112] Stewart, G. A Krylov-Schur algorithm for large eigenproblems. SIAM
J. Matrix Anal. Appl. 23, 3 (2001), 601–614.



194 BIBLIOGRAPHY

[113] Stewart, G. W. Error and perturbation bounds for subspaces associated
with certain eigenvalue problems. SIAM Review 15, 4 (1973), 727–764.

[114] Turner, J. S. Buoyancy Effects in Fluids. Cambridge University Press,
1973.

[115] Van Barel, M., Fasino, D., Gemignani, L., and Mastronardi, N.
Orthogonal Rational Functions and Structured Matrices. SIAM J. Matrix
Anal. Appl. 26, 3 (2005), 810–829.

[116] Van Barel, M., and Kravanja, P. Nonlinear eigenvalue problems
and contour integrals. J. Comput. Appl. Math. 292 (2016), 526–540.

[117] Van Beeumen, R., Meerbergen, K., and Michiels, W. A rational
Krylov method based on Hermite interpolation for nonlinear eigenvalue
problems. SIAM J. Sci. Comput. 35, 1 (2013), A327–A350.

[118] Van Beeumen, R., Meerbergen, K., and Michiels, W. Compact
rational Krylov methods for nonlinear eigenvalue problems. SIAM J.
Matrix Anal. Appl. 36, 2 (2015), 820–838.

[119] Van Beeumen, R., Meerbergen, K., and Michiels, W. Connections
between contour integration and rational Krylov methods for eigenvalue
problems, 2016. Department of Computer Science, KU Leuven, Technical
report TW 673.

[120] van der Vorst, H. A. Iterative Krylov Methods for Large Linear Systems.
Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2003.

[121] Van Dooren, P. The computation of Kronecker’s canonical form of a
singular pencil. Linear Algebra Appl. 27, C (1979), 103–140.

[122] Van Dooren, P. A generalized eigenvalue approach for solving Riccati
equations. SIAM Journal on Scientific and Statistical Computing 2, 2
(1981), 121–135.

[123] Vandebril, R. Chasing bulges or rotations? A metamorphosis of the
QR-Algorithm. SIAM J. Matrix Anal. Appl. 32, 1 (2011), 217–247.

[124] Vandebril, R., Golub, G., and Van Barel, M. A quasi-separable
approach to solve the symmetric definite tridiagonal generalized eigenvalue
problem. SIAM J. Matrix Anal. Appl. 31, 1 (2009).

[125] Vandebril, R., Van Barel, M., and Mastronardi, N. A parallel QR-
factorization/solver of quasiseparable matrices. Electron. Trans. Numer.
Anal. 30 (2008), 144–167.



BIBLIOGRAPHY 195

[126] Vandebril, R., Van Barel, M., and Mastronardi, N. Matrix
Computations and Semiseparable Matrices, Volume II: Eigenvalue and
Singular Value Methods. Johns Hopkins University Press, Baltimore,
Maryland, USA, 2008.

[127] Vandebril, R., Van Barel, M., and Mastronardi, N. Rational
QR-iteration without inversion. Numer. Math. 110, 4 (2008), 561–575.

[128] Vandebril, R., Van Barel, M., and Mastronardi, N. A new
iteration for computing the eigenvalues of semiseparable (plus diagonal)
matrices. Electronic Transactions on Numerical Analysis 33 (2009), 126–
150.

[129] Vandebril, R., and Watkins, D. S. A generalization of the multishift
QR algorithm. SIAM J. Matrix Anal. Appl. 33, 3 (2012), 759–779.

[130] Vandebril, R., and Watkins, D. S. An extension of the QZ algorithm
beyond the Hessenberg-upper triangular pencil. Electron. Trans. Numer.
Anal. 40 (2013), 17–35.

[131] Walker, H. F. Implementation of the GMRES method using
Householder transformations. SIAM J. Sci. Statist. Comput 9, 1 (1988),
152–163.

[132] Ward, R. C. The combination shift QZ algorithm. SIAM J. Numer.
Anal. 12, 6 (1975), 835–853.

[133] Watkins, D. S. Understanding the QR algorithm. SIAM Rev. 24, 4
(1982), 427–440.

[134] Watkins, D. S. Some perspectives on the eigenvalue problem. SIAM
Rev. 35, 3 (1993), 430–471.

[135] Watkins, D. S. The transmission of shifts and shift blurring in the QR
algorithm. Linear Algebra Appl. 241-243, 1996 (1996), 877–896.

[136] Watkins, D. S. Bulge exchanges in algorithms of QR-type. SIAM
Journal on Matrix Analysis and Applications 19, 4 (1998), 1074–1096.

[137] Watkins, D. S. Performance of the QZ Algorithm in the Presence of
Infinite Eigenvalues. SIAM J. Matrix Anal. Appl. 22, 2 (2000), 364–375.

[138] Watkins, D. S. The Matrix Eigenvalue Problem: GR and Krylov
Subspace Methods. Society for Industrial and Applied Mathematics, 2007.

[139] Watkins, D. S. Francis’s algorithm. Am. Math. Mon. 118, 5 (2011),
387–403.



196 BIBLIOGRAPHY

[140] Watkins, D. S., and Elsner, L. Theory of decomposition and bulge-
chasing algorithms for the generalized eigenvalue problem. SIAM J. Matrix
Anal. Appl. 15, 3 (1994), 943–967.

[141] Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University
Press, 1965.

[142] Wilkinson, J. H. Global convergene of tridiagonal QR algorithm with
origin shifts. Linear Algebra Appl. 1, 3 (1968), 409–420.



Curriculum vitae

Personalia

Name: Daan Camps.
Date of birth: July 6, 1988.
Place of birth: Neerpelt, Belgium.

Education

2015–2019

Ph.D. in Engineering Science: Computer Science.
KU Leuven, Belgium.

2011–2013

M.Sc. in Engineering Science: Mathematical Engineering.
KU Leuven, Belgium.

2009–2011

M.Sc. in Astronomy.
KU Leuven, Belgium.

2006–2010

B.Sc. in Physics.
UHasselt, Belgium.

197



198 CURRICULUM VITAE

Teaching

2015–2016

Teaching assistant for Numerieke Wiskunde [H01D8B].

2015–2019

Teaching assistant for Numerieke Modellering en Benadering [H01P3A].

2016–2017

Teaching assistant for Numerieke Wiskunde [G0N90B].



List of publications

This is a list of publications and scientific achievements by the author during
the period 2015-2019.

Articles in international reviewed journals

• Camps D., Meerbergen K., and Vandebril R., A rational QZ method.
(2019) SIAM Journal on Matrix Analysis and Applications. Volume 40,
Number 3, Pages 943–972.

• Camps D., Mastronardi N., Vandebril R., and Van Dooren P., Swapping
2× 2 blocks in the Schur and generalized Schur form. (2019) Journal on
Computational and Applied Mathematics. Available online.

• Camps D., Meerbergen K., and Vandebril R., An implicit filter for
rational Krylov using core transformations. (2019) Linear Algebra and its
Applications. Volume 561, 15 January 2019, Pages 113-140.

Submitted articles

• Camps D., Mach T., Vandebril R., and Watkins D. S., On pole-swapping
methods for the eigenvalue problem. (2019) Submitted.

• Camps D., Meerbergen K., and Vandebril R., A multishift, multipole
rational QZ method with aggressive early deflation. (2019) Submitted.

199



200 LIST OF PUBLICATIONS

Articles in preparation

• Camps D., Mach T., Vandebril R., and Watkins D. S., Pole swapping
methods for Hessenberg, unitary Hessenberg pencils: Rational QR
algorithms. In preparation.

• Camps D., Vandebril R., and Van Dooren P., Two-sided rational
iterations for tridiagonal pencils. In preparation.

Presentations at international conferences

• Camps D. (2019). Pole swapping methods for the eigenvalue problem –
Rational QR algorithms. Presented at ICIAM, Valencia, Spain, 15 Jul
2019-19 Jul 2019.

• Camps D., Güttel S., Mach T., Vandebril R. (2019). Approximate
inverse-free rational Krylov methods and the link with FOM and GMRES.
Presented at ETNA25, Santa Margherita di Pula, Italy, 27 May 2019-29
May 2019.

• Camps D., Vandebril R., Meerbergen K. (2018). A rational QZ method.
Presented at the NASCA, Kalamata, Greece, 02 Jul 2018-06 Jul 2018.

• Camps D., Vandebril R., Meerbergen K. (2018). RQZ: A rational QZ
method for the generalized eigenvalue problem. Presented at the SIAM
Conference on Applied Linear Algebra, Hong Kong, 04 May 2018-08 May
2018.

• Camps D., Meerbergen K., Vandebril R. (2017). On the implicit restart of
the rational Krylov method: chasing algorithms for polynomial, extended
and rational Krylov. Presented at the ILAS, Iowa State University - Ames,
IA, 24 Jul 2017-28 Jul 2017

• Camps D., Meerbergen K., Vandebril R. (2016). Towards a computa-
tional efficient, implicitly restarted rational Krylov method. Presented at
the ILAS, Leuven, 11 Jul 2016-15 Jul 2016.





FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

NUMA
Celestijnenlaan 200A box 2402

B-3001 Leuven
daan.camps@cs.kuleuven.be

https://campsd.github.io/


	Abstract
	Beknopte samenvatting
	List of Symbols
	Contents
	Introduction
	A concise historical overview
	Overview of the thesis

	Krylov and QR eigenvalue methods
	Properties and decompositions
	The standard eigenvalue problem
	The generalized eigenvalue problem

	Krylov subspace methods
	Orthonormal Krylov bases and Hessenberg matrices
	Arnoldi's iterative method

	The implicit QR method
	Creating zeros in matrices
	Implicit QR
	Implicit QZ
	BLAS and levels

	Conclusion

	A rational QZ method
	Introduction
	Hessenberg pairs and their poles
	Proper Hessenberg pairs

	Manipulating the poles of Hessenberg pairs
	Changing poles at the boundaries
	Swapping poles

	Direct reduction to a proper Hessenberg pair
	The reduction algorithm
	Numerical experiment

	Implicitly single shifted rational QZ step
	The algorithm
	Shifts, poles, and deflation
	Numerical experiment
	Tightly-packed shifts

	Implicit Q theorem
	Rational Krylov matrices and subspaces
	Proper Hessenberg pairs and rational Krylov
	Proof of the implicit Q theorem

	Implicit rational subspace iteration
	An example of a rational filter

	Perfect shifts in rational QZ
	Conclusion

	A multishift, multipole rational QZ method with aggressive early deflation
	Introduction
	Block Hessenberg pencils
	Definitions and elementary results
	Rational Krylov and block Hessenberg pencils
	Manipulating poles of block Hessenberg pencils
	Multishift, multipole RQZ step

	Uniqueness and convergence
	Numerical considerations
	Introducing pole blocks
	Swapping pole blocks
	Deflation monitoring

	Aggressive early deflation
	Numerics
	dRQZm and zRQZm
	Random problems
	Problems from applications

	Conclusion and future work

	Rational QZ for Hessenberg, unitary Hessenberg pencils
	Introduction
	Hessenberg, unitary Hessenberg pencils
	Manipulating poles

	Computational cost
	Numerical experiment
	Conclusion

	Two-sided pole swapping for tridiagonal pencils
	Introduction
	Tridiagonal pencils
	Swapping poles on the subdiagonal
	Diagonal scaling of transformations
	Iterative refinement
	Special cases

	Swapping poles in symmetric block tridiagonal pencils
	Pole introduction
	Rational LR and TTT (T3) algorithms
	Uniqueness and convergence

	Numerical experiments
	Conclusion

	Implicitly filtering the rational Krylov method
	Introduction
	Rational Krylov methods
	Rational Krylov matrices and subspaces
	Ruhe's iterative method
	Ritz values in rational Krylov
	Structure in the Galerkin projection

	Filtering the rational Krylov method
	Numerical experiments
	Conclusion

	Conclusions and outlook
	Contributions
	Outlook

	Core transformations and the extended Hessenberg form
	Three operations on core transformations
	Extended Hessenberg matrices and pencils

	Backward stable pole swapping
	Error analysis
	Numerical experiments

	Bibliography
	Curriculum vitae
	List of publications

